For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT...To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.展开更多
To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together...To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representa-tion. And a decision rule is established for Automatic Target Recognition (ATR) based on the mini-mum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective.展开更多
The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is pro...The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is proposed in order to reduce the dimension of range profiles.Features extracted from radar HRRPs are normalized and smoothed,and then comparative analysis of the similar approaches is done.The range profiles are obtained by step frequency technique using the two-dimensional backscatters distribution data of four different aircraft models.The template matching method by nearest neighbor rules,which is based on the theory of kernel methods for pattern analysis,is used to classify and identify the range profiles from four different aircrafts.Numerical simulation results show that the proposed approach can achieve good performance of stability,shift independence and higher recognition rate.It is helpful for real-time identification and the engineering implements of automatic target recognition using HRRP.The number of required templates could be reduced con-siderably while maintaining an equivalent recognition rate.展开更多
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
基金funded by the National Key R&D Program of China(No.2018YFC0603202)the National Natural Science Foundation of China(No.41404111)+1 种基金Natural Science Foundation of Hunan Province(No.2018JJ2258)Hunan Provincial Science and Technology Project Foundation(No.2018TP1018)
文摘To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.
基金Partially supported by the National Natural Science Foundation of China (No.60302009).
文摘To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representa-tion. And a decision rule is established for Automatic Target Recognition (ATR) based on the mini-mum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective.
文摘The paper addresses the problem of target recognition using High-resolution Radar Range Profiles(HRRP).A novel approach of feature extraction and dimension reduction based on extended high order central moments is proposed in order to reduce the dimension of range profiles.Features extracted from radar HRRPs are normalized and smoothed,and then comparative analysis of the similar approaches is done.The range profiles are obtained by step frequency technique using the two-dimensional backscatters distribution data of four different aircraft models.The template matching method by nearest neighbor rules,which is based on the theory of kernel methods for pattern analysis,is used to classify and identify the range profiles from four different aircrafts.Numerical simulation results show that the proposed approach can achieve good performance of stability,shift independence and higher recognition rate.It is helpful for real-time identification and the engineering implements of automatic target recognition using HRRP.The number of required templates could be reduced con-siderably while maintaining an equivalent recognition rate.