This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and...This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and an analytical expression of its temperature distribution is obtained. According to the expression, the non-Fourier heat conduction behavior that will appear in the hollow sphere is studied and some qualitative conditions that will result in distinct non-Fourier behavior in the medium is ultimately attained. (2) A novel experiment to observe non-Fourier heat conduction behavior in porous material (mainly ordinary duplicating paper) heated by a microsecond laser pulse is presented. The conditions for observing distinct non-Fourier heat conduction behavior in the experimental sample agree well with the theoretical results qualitatively.展开更多
基金Supported by the Chinese Academy of Sciences (No. KJ 951-B1-704), the National Natural Science Foundation of China (No. 59736130) and the State Key Fundamental Research Plan of China (No. G2000026305).
文摘This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and an analytical expression of its temperature distribution is obtained. According to the expression, the non-Fourier heat conduction behavior that will appear in the hollow sphere is studied and some qualitative conditions that will result in distinct non-Fourier behavior in the medium is ultimately attained. (2) A novel experiment to observe non-Fourier heat conduction behavior in porous material (mainly ordinary duplicating paper) heated by a microsecond laser pulse is presented. The conditions for observing distinct non-Fourier heat conduction behavior in the experimental sample agree well with the theoretical results qualitatively.