In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieram...In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.展开更多
Empirical mode decomposition (EMD) is an adaptive and approximately orthogonal filtering process that reflects human’s visual mechanism of differentiating textures. In this paper, we present a modified 2D EMD algorit...Empirical mode decomposition (EMD) is an adaptive and approximately orthogonal filtering process that reflects human’s visual mechanism of differentiating textures. In this paper, we present a modified 2D EMD algorithm using the FastRBF and an appropriate number of iterations in the shifting process (SP), then apply it to texture classification. Rotation-invariant texture feature vectors are extracted using auto-registration and circular regions of magnitude spectra of 2D fast Fourier transform (FFT). In the experiments, we employ a Bayesion classifier to classify a set of 15 distinct natural textures selected from the Brodatz album. The experimental results, based on different testing datasets for images with different orientations, show the effectiveness of the proposed classification scheme.展开更多
We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by u...We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.展开更多
A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. S...A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.展开更多
The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in featu...The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes.展开更多
The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar...The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar classification for dark modified KdV (MKdV) systems is obtained by requiring the existence of higher order differential polynomial symmetries. Different to the nine classes of the dark KdV case, there exist twelve independent classes of the dark MKdV equations. Fhrthermore, for the every class of dark MKdV system, there is a free parameter. Only for a fixed parameter, the dark MKdV can be related to dark KdV via suitable Miura transformation. The reeursion operators of two classes of dark MKdV systems are also given.展开更多
In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a c...In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.展开更多
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.
基金Project supported by the National Basic Research Program (973) of China (Nos. 2004CB318000 and 2002CB312104), the National Natural Science Foundation of China (Nos. 60133020 and 60325208) and the Natural Science Foundation of Beijing (No. 1062006), China
文摘Empirical mode decomposition (EMD) is an adaptive and approximately orthogonal filtering process that reflects human’s visual mechanism of differentiating textures. In this paper, we present a modified 2D EMD algorithm using the FastRBF and an appropriate number of iterations in the shifting process (SP), then apply it to texture classification. Rotation-invariant texture feature vectors are extracted using auto-registration and circular regions of magnitude spectra of 2D fast Fourier transform (FFT). In the experiments, we employ a Bayesion classifier to classify a set of 15 distinct natural textures selected from the Brodatz album. The experimental results, based on different testing datasets for images with different orientations, show the effectiveness of the proposed classification scheme.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.
基金Projects(90820302, 60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education, ChinaProject(2009FJ4030) supported by Academician Foundation of Hunan Province, China
文摘A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.
基金Supported by the National Natural Science Foundation of China, under Grant No.51279033.
文摘The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes.
基金Supported by the Global Change Research Program of China under Grant No.2015Cb953904National Natural Science Foundation of China under Grant Nos.11675054,11435005,11175092,and 11205092+1 种基金Shanghai Knowledge Service Platform for Trustworthy Internet of Things(No.ZF1213)K.C.Wong Magna Fund in Ningbo University
文摘The dark Korteweg-de Vries (KdV) systems are defined and classified by Kupershmidt sixteen years ago. However, there is no other classifications for other kinds of nonlinear systems. In this paper, a complete scalar classification for dark modified KdV (MKdV) systems is obtained by requiring the existence of higher order differential polynomial symmetries. Different to the nine classes of the dark KdV case, there exist twelve independent classes of the dark MKdV equations. Fhrthermore, for the every class of dark MKdV system, there is a free parameter. Only for a fixed parameter, the dark MKdV can be related to dark KdV via suitable Miura transformation. The reeursion operators of two classes of dark MKdV systems are also given.
文摘In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.