油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异...油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。展开更多
为了实现对电力变压器绝缘状态的智能评估,提出了一种融合核主成分分析和集成学习理论的电力变压器油纸绝缘评估方法。在特征提取方面,通过回复电压法(recovery voltage method,RVM)提取特征量,并对特征量进行核主成分分析(kernel princ...为了实现对电力变压器绝缘状态的智能评估,提出了一种融合核主成分分析和集成学习理论的电力变压器油纸绝缘评估方法。在特征提取方面,通过回复电压法(recovery voltage method,RVM)提取特征量,并对特征量进行核主成分分析(kernel principle component analysis,KPCA),将低维度的样本空间映射到高维度的核空间,并按照重要性进行排序;在评估识别方面,利用集成学习的思想建立分类器群模型,克服了单分类器的局限性,并提高了分类器的分类预测能力。通过实例论证,融合核主成分分析和集成学习的分类模型在变压器油纸绝缘评估中具有很高的准确性。展开更多