期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
S+Miner系统下决策树与神经元网络的比较研究
1
作者 冯建彪 《新校园(上旬刊)》 2010年第9期30-31,共2页
分类是一种重要的数据挖掘技术,其目的是根据数据集的特点构造一个分类函数或分类模型,该模型能把未知类别的样本映射到给定类别中的某一个。通过介绍企业级数据挖掘工具S+Miner下的实验方法,用S语言分别实现分类型决策树及神经元... 分类是一种重要的数据挖掘技术,其目的是根据数据集的特点构造一个分类函数或分类模型,该模型能把未知类别的样本映射到给定类别中的某一个。通过介绍企业级数据挖掘工具S+Miner下的实验方法,用S语言分别实现分类型决策树及神经元网络算法并嵌入系统内,通过数据集实验比较分析了两种算法,为深入研究分类算法做好铺垫。 展开更多
关键词 S+Miner 分类型决策树 神经元网络 S语言
下载PDF
Effective use of FibroTest to generate decision trees in hepatitis C 被引量:2
2
作者 Dana Lau-Corona Luís Alberto Pineda +10 位作者 Héctor Hugo Avilés Gabriela Gutiérrez-Reyes Blanca Eugenia Farfan-Labonne Rafael Núez-Nateras Alan Bonder Rosalinda Martínez-García Clara Corona-Lau Marco Antonio Olivera-Martínez Maria Concepción Gutiérrez-Ruiz Guillermo Robles-Díaz David Kershenobich 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第21期2617-2622,共6页
AIM: To assess the usefulness of FibroTest to forecast scores by constructing decision trees in patients with chronic hepatitis C.METHODS: We used the C4.5 classification algorithm to construct decision trees with d... AIM: To assess the usefulness of FibroTest to forecast scores by constructing decision trees in patients with chronic hepatitis C.METHODS: We used the C4.5 classification algorithm to construct decision trees with data from 261 patients with chronic hepatitis C without a liver biopsy. The FibroTest attributes of age, gender, bilirubin, apolipoprotein, haptoglobin, α2 macroglobulin, and γ-glutamyl transpeptidase were used as predictors, and the FibroTest score as the target. For testing, a 10-fold cross validation was used.RESULTS: The overall classification error was 14.9% (accuracy 85.1%). FibroTest's cases with true scores of FO and F4 were classified with very high accuracy (18/20 for FO, 9/9 for FO-1 and 92/96 for F4) and the largest confusion centered on F3. The algorithm produced a set of compound rules out of the ten classification trees and was used to classify the 261 patients. The rules for the classification of patients in FO and F4 were effective in more than 75% of the cases in which they were tested.CONCLUSION: The recognition of clinical subgroups should help to enhance our ability to assess differences in fibrosis scores in clinical studies and improve our understanding of fibrosis progression, 展开更多
关键词 Hepatitis C FibroTest Decision trees C4.5algorithm Non-invasive biomarkers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部