期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
数据异质场景下的联邦学习模型校正与聚合 被引量:2
1
作者 邹承明 赵宁 《电子测量技术》 北大核心 2022年第20期102-109,共8页
作为一种分布式机器学习范式,联邦学习在用户数据隐私保护方面拥有巨大潜力,是近年来的一大研究热点。首先,针对数据统计异质场景中普遍存在的用户模型偏差问题,提出了基于生成对抗网络的虚拟特征生成与分类层校正方案。其次,针对特殊... 作为一种分布式机器学习范式,联邦学习在用户数据隐私保护方面拥有巨大潜力,是近年来的一大研究热点。首先,针对数据统计异质场景中普遍存在的用户模型偏差问题,提出了基于生成对抗网络的虚拟特征生成与分类层校正方案。其次,针对特殊的概念偏移场景,提出了基于分类层聚类的个性化分组聚合方案。最后,整合上述两种方案,并在图像分类数据集CIFAR-10上进行单项实验和集成实验。实验结果显示,相较于经典的联邦平均聚合算法,本文所提出的集成方案不仅显著提升了单中心全局模型的收敛速度,也增强了多中心簇模型的个性化能力。 展开更多
关键词 联邦学习 数据异质 分类校正 分类层聚类
下载PDF
Classification of tight sandstone reservoirs based on NMR logging 被引量:6
2
作者 Li Chang-Xi Liu Mi Guo Bin-Cheng 《Applied Geophysics》 SCIE CSCD 2019年第4期549-558,562,共11页
The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandston... The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandstone reservoirs because of their complex pore structure and large heterogeneity.Specifically,the method that is commonly used to characterize the reservoir pore structure is dependent on the nuclear magnetic resonance(NMR)transverse relaxation time(T2)distribution,which is closely related to the pore size distribution.Further,the pore structure parameters(displacement pressure,maximum pore-throat radius,and median pore-throat radius)can be determined and applied to reservoir classification based on the empirical linear or power function obtained from the NMR T2 distributions and the mercury intrusion capillary pressure ourves.However,the effective generalization of these empirical functions is difficult because they differ according to the region and are limited by the representative samples of different regions.A lognormal distribution is commonly used to describe the pore size and particle size distributions of the rock and quantitatively characterize the reservoir pore structure based on the volume,mean radius,and standard deviation of the small and large pores.In this study,we obtain six parameters(the volume,mean radius,and standard deviation of the small and large pores)that represent the characteristics of pore distribution and rock heterogeneity,calculate the total porosity via NMR logging,and classify the reservoirs via cluster analysis by adopting a bimodal lognormal distribution to fit the NMR T2 spectrum.Finally,based on the data obtained from the core tests and the NMR logs,the proposed method,which is readily applicable,can effectively classify the tight sandstone reservoirs. 展开更多
关键词 nuclear magnetic resonance(NMR) tight sandstone pore structure lognormal distribution cluster analysis reservoir classification
下载PDF
Analyzing Motion Patterns in Crowded Scenes via Automatic Tracklets Clustering 被引量:1
3
作者 王冲 赵旭 +1 位作者 邹毅 刘允才 《China Communications》 SCIE CSCD 2013年第4期144-154,共11页
Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose... Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach. 展开更多
关键词 crowded scene analysis motionpattern tracklet automatic clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部