The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandston...The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandstone reservoirs because of their complex pore structure and large heterogeneity.Specifically,the method that is commonly used to characterize the reservoir pore structure is dependent on the nuclear magnetic resonance(NMR)transverse relaxation time(T2)distribution,which is closely related to the pore size distribution.Further,the pore structure parameters(displacement pressure,maximum pore-throat radius,and median pore-throat radius)can be determined and applied to reservoir classification based on the empirical linear or power function obtained from the NMR T2 distributions and the mercury intrusion capillary pressure ourves.However,the effective generalization of these empirical functions is difficult because they differ according to the region and are limited by the representative samples of different regions.A lognormal distribution is commonly used to describe the pore size and particle size distributions of the rock and quantitatively characterize the reservoir pore structure based on the volume,mean radius,and standard deviation of the small and large pores.In this study,we obtain six parameters(the volume,mean radius,and standard deviation of the small and large pores)that represent the characteristics of pore distribution and rock heterogeneity,calculate the total porosity via NMR logging,and classify the reservoirs via cluster analysis by adopting a bimodal lognormal distribution to fit the NMR T2 spectrum.Finally,based on the data obtained from the core tests and the NMR logs,the proposed method,which is readily applicable,can effectively classify the tight sandstone reservoirs.展开更多
Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose...Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach.展开更多
基金supported by the by the National Science and Technology Major Project “Prediction Technique and Evaluation of Tight Oil Sweet Spot”(2016ZX05046-002)
文摘The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandstone reservoirs because of their complex pore structure and large heterogeneity.Specifically,the method that is commonly used to characterize the reservoir pore structure is dependent on the nuclear magnetic resonance(NMR)transverse relaxation time(T2)distribution,which is closely related to the pore size distribution.Further,the pore structure parameters(displacement pressure,maximum pore-throat radius,and median pore-throat radius)can be determined and applied to reservoir classification based on the empirical linear or power function obtained from the NMR T2 distributions and the mercury intrusion capillary pressure ourves.However,the effective generalization of these empirical functions is difficult because they differ according to the region and are limited by the representative samples of different regions.A lognormal distribution is commonly used to describe the pore size and particle size distributions of the rock and quantitatively characterize the reservoir pore structure based on the volume,mean radius,and standard deviation of the small and large pores.In this study,we obtain six parameters(the volume,mean radius,and standard deviation of the small and large pores)that represent the characteristics of pore distribution and rock heterogeneity,calculate the total porosity via NMR logging,and classify the reservoirs via cluster analysis by adopting a bimodal lognormal distribution to fit the NMR T2 spectrum.Finally,based on the data obtained from the core tests and the NMR logs,the proposed method,which is readily applicable,can effectively classify the tight sandstone reservoirs.
基金supported in part by National Basic Research Program of China (973 Program) under Grant No. 2011CB302203the National Natural Science Foundation of China under Grant No. 61273285
文摘Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach.