Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this proble...Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.展开更多
Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta...Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1078the Key Program of NSFC-Guangdong Union Foundation under Grant No.U1135002+1 种基金Major National S&T Program under Grant No.2011ZX03005-002the Fundamental Research Funds for the Central Universities under Grant No.JY10000903001
文摘Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.
基金supported in part by Research Fund for the Doctoral Program of Higher Education of China(No.20120009110007)Program for Innovative Research Team in University of Ministry of Education of China (No.IRT201206)+3 种基金Program for New Century Excellent Talents in University(NCET-110565)the Fundamental Research Funds for the Central Universities(No.2012JBZ010)the Open Project Program of Beijing Key Laboratory of Trusted Computing at Beijing University of TechnologyBeijing Higher Education Young Elite Teacher Project(No. YETP0542)
文摘Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.