Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen(n CCII), recombinant peptide containing n CCII tolerogenic epitopes(CTEs), or a therapeutic DNA vaccine encoding the full-...Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen(n CCII), recombinant peptide containing n CCII tolerogenic epitopes(CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2 A1 c DNA. As recombinant CCII(r CCII) might avoid potential pathogenic virus contamination during n CCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on r CCII triple helix molecular assembly. We constructed p C-and p N-procollagen(without N-or Cpropeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115(his4, Mut+) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both p C-and p N-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight p C-or p N-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen p Cα1(II) can induce collagen-induced arthritis(CIA) rat model, which seems to be as effective as the current standard n CCII. Notably, protease digestion assays showed that r CCII could assemble in the absence of C-and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for r CCII expression and folding.展开更多
文摘Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen(n CCII), recombinant peptide containing n CCII tolerogenic epitopes(CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2 A1 c DNA. As recombinant CCII(r CCII) might avoid potential pathogenic virus contamination during n CCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on r CCII triple helix molecular assembly. We constructed p C-and p N-procollagen(without N-or Cpropeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115(his4, Mut+) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both p C-and p N-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight p C-or p N-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen p Cα1(II) can induce collagen-induced arthritis(CIA) rat model, which seems to be as effective as the current standard n CCII. Notably, protease digestion assays showed that r CCII could assemble in the absence of C-and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for r CCII expression and folding.