期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于神经网络模型预测涤纶FDY油剂及其乳液的外观 被引量:2
1
作者 郑征 杨以琳 +3 位作者 马剑斌 徐锦龙 王松林 陈伟波 《合成纤维工业》 CAS 2020年第5期16-21,共6页
将基础油剂、偏亲水乳化剂和偏亲油乳化剂按不同配比制备涤纶全拉伸丝(FDY)油剂以及油剂质量分数为1%的乳液,定量分析油剂及乳液的外观随基础油剂含量、偏亲水乳化剂含量的变化规律;建立以基础油剂含量及偏亲水乳化剂含量为输入、油剂... 将基础油剂、偏亲水乳化剂和偏亲油乳化剂按不同配比制备涤纶全拉伸丝(FDY)油剂以及油剂质量分数为1%的乳液,定量分析油剂及乳液的外观随基础油剂含量、偏亲水乳化剂含量的变化规律;建立以基础油剂含量及偏亲水乳化剂含量为输入、油剂及乳液的外观为输出的分类神经网络模型,用采集的不同配方下油剂及乳液的外观进行网络训练,用新配方下油剂及乳液的外观进行模型验证。结果表明:油剂及乳液的外观是关于基础油剂含量、偏亲水乳化剂含量的分段函数,在基础油剂含量确定时,随着偏亲水乳化剂含量增加,油剂及乳液的外观依次呈现出白色乳液、略带蓝光白色乳液、蓝白色半透明液体、透明液体和暗灰色液体,且油剂分层;分类神经网络模型经训练后,准确率达98.3%,模型拟合效果好,能准确预测新配方下油剂及乳液的外观,可以为判断新油剂配方下能否制备微乳液体系提供帮助。 展开更多
关键词 油剂 乳液 微乳液 外观 分类神经网络模型 预测
下载PDF
小波神经网络多属性综合评价及其应用 被引量:1
2
作者 李建丽 钟仪华 李智超 《科技资讯》 2008年第3期112-114,共3页
本文针对现存多属性综合评价方法的不足,借助小波神经网络思想、原理,构造了一种新的分类小波神经网络多属性综合评价模型,并进行了实例验证,表明此分类小波神经网络多属性综合评价方法是正确、可行的,且能有效地提高综合评价精度与收... 本文针对现存多属性综合评价方法的不足,借助小波神经网络思想、原理,构造了一种新的分类小波神经网络多属性综合评价模型,并进行了实例验证,表明此分类小波神经网络多属性综合评价方法是正确、可行的,且能有效地提高综合评价精度与收敛速度。 展开更多
关键词 多属性综合评价 小波神经网络(WNN) 分类小波神经网络模型 应用
下载PDF
基于关键词加权的混合特征文本快速分类仿真
3
作者 徐佳丽 杨长红 《计算机仿真》 2024年第3期510-513,518,共5页
电子文本形式的网络信息不仅数量多,且混合特征具有较高相似性,很难达到特征的平均分布。特征项在类别间的不均性导致文本权重计算易出现偏差,影响类别特征词的提取,导致文本分类难度较大。为此,提出一种基于关键词加权的混合特征文本... 电子文本形式的网络信息不仅数量多,且混合特征具有较高相似性,很难达到特征的平均分布。特征项在类别间的不均性导致文本权重计算易出现偏差,影响类别特征词的提取,导致文本分类难度较大。为此,提出一种基于关键词加权的混合特征文本快速分类方法。采用词频逆文本频率指数信息检索方法对文本加权,计算不同权重下文本关键词在中心集合中出现的频率。根据频率阈值提取关键特征,确定文本集合中类中心点。计算与类中心相关性最高的文本数据,提取关联度特征。建立神经网络分类模型,预先设定一组包含详细特征的文本集,作为初始值输入到神经网络中,每个层次根据目标特征逐一比对实现有效分类。实验证明,所研究方法的查全率更高,文本混合特征提取的召回率高于40%,说明研究方法应用性能更优,对不同种类的文本集均能完成精准分类。 展开更多
关键词 关键词加权 混合特征文本 频率阈值 神经网络分类模型
下载PDF
基于Petri网的模型与GIS集成研究 被引量:1
4
作者 王少文 薛安 倪晋仁 《遥感学报》 EI CSCD 北大核心 2001年第3期166-170,T001,共6页
以BP神经网络遥感分类模型为例 ,探讨了模型与地理信息系统的集成问题。指出问题的实质是对象状态数据模型、对象模拟模型和对象分析处理模型的综合表达与处理。提出了建立在元数据和元模型基础上基于数据处理流程的集成方案的一般结构... 以BP神经网络遥感分类模型为例 ,探讨了模型与地理信息系统的集成问题。指出问题的实质是对象状态数据模型、对象模拟模型和对象分析处理模型的综合表达与处理。提出了建立在元数据和元模型基础上基于数据处理流程的集成方案的一般结构。分析了Petri网的演绎形Derivation网的特点 ,设计了Deriva tion +网。提出了Derivation +网对元数据和元模型的管理方案以及Derivation +网内部校验方法。在此基础上以Derivation +网为核心 ,以元数据和元模型为接口 。 展开更多
关键词 地理信息系统 PETRI网 集成 BP神经网络遥感分类模型
下载PDF
扩展的树增强朴素贝叶斯网络信用评估模型 被引量:12
5
作者 李旭升 郭春香 郭耀煌 《系统工程理论与实践》 EI CSCD 北大核心 2008年第6期129-136,共8页
针对信用评估问题的特点,在推导混合数据极大似然函数的基础上,提出了扩展的树增强朴素贝叶斯网络信用评估模型,用10层交叉验证在真实数据集上进行了测试并与神经网络分类模型进行了比较.测试结果表明扩展的树增强朴素贝叶斯网络信用评... 针对信用评估问题的特点,在推导混合数据极大似然函数的基础上,提出了扩展的树增强朴素贝叶斯网络信用评估模型,用10层交叉验证在真实数据集上进行了测试并与神经网络分类模型进行了比较.测试结果表明扩展的树增强朴素贝叶斯网络信用评估模型具有较高的分类精度,在信用评估中具有优势. 展开更多
关键词 信用评估 贝叶斯网络 树增强朴素贝叶斯分类模型 扩展的树增强朴素贝叶斯分类模型 神经网络分类模型
原文传递
Dynamic vaccine distribution model based on epidemic diffusion rule and clustering approach 被引量:2
6
作者 许晶晶 王海燕 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期132-136,共5页
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi... Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion. 展开更多
关键词 epidemic diffusion rule clustering approach SIQR model self-organizing map (SOM) neural network vaccine distribution model
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
7
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD 被引量:1
8
作者 Zhang Li Luo Jianhua Yang Suying 《Journal of Electronics(China)》 2009年第3期407-411,共5页
In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are... In this study, a Multi-Layer BP neural network(MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure, theoretical guidance and plentiful experiments are combined to optimize the hidden layers' parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time, and it improves the robustness of the model to a high level.Finally, the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results, and it is more reliable and effective to solve the problem. 展开更多
关键词 Neural network classifier Dynamic threshold Forecasting Box office revenue
下载PDF
流空间视角下武汉都市圈城市空间联系格局及影响因素 被引量:2
9
作者 林赛南 邓慧琳 +2 位作者 彭馨雨 陈书迪 王雨 《经济地理》 CSCD 北大核心 2024年第2期81-89,共9页
进入高质量发展阶段,都市圈作为国家新型城镇化战略格局中承上启下的关键环节,已成为引领区域发展的重要空间单元。文章以武汉都市圈为研究区域,基于手机信令、百度指数等多源大数据,采用要素流模型、SOM神经网络分级模型和QAP关系回归... 进入高质量发展阶段,都市圈作为国家新型城镇化战略格局中承上启下的关键环节,已成为引领区域发展的重要空间单元。文章以武汉都市圈为研究区域,基于手机信令、百度指数等多源大数据,采用要素流模型、SOM神经网络分级模型和QAP关系回归分析等得出城市空间联系格局、发展规律及影响因素。结果表明:①武汉都市圈各要素流动形成的空间格局呈多中心组团式结构,且内部流动强度不一;②根据SOM神经网络分级模型结果将武汉都市圈城市的对外联系能力划分为4个等级,其中武汉的对外联系能力与其他城市之间呈现出显著差异;③城市发展水平和信息化水平差异对不同城市间要素流强度具有显著负影响,城市规模和开放程度差异具有显著的正向作用,共同影响了都市圈内城市空间联系格局的形成。最后,针对武汉都市圈城市空间联系格局的优化提出建议。 展开更多
关键词 要素流 人口流 多源数据 手机信令 SOM神经网络分类模型 空间联系格局 武汉都市圈
原文传递
A biologically inspired model for pattern recognition 被引量:1
10
作者 Eduardo GONZALEZ Hans LILJENSTROM +1 位作者 Yusely RUIZ Guang LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第2期115-126,共12页
In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of... In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with distributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and malignant classes is used to demonstrate the capacity of the model to learn and recognize patterns, even when these are deformed versions of the originally learned patterns. The performance of the novel model was compared with three artificial neural networks (ANNs), a back-propagation network, a support vector machine classifier, and a radial basis function classifier. All the ANNs and the olfactory bionic model were tested in a benchmark study of a standard dataset. Experimental results show that the bionic olfactory system model can learn and classify patterns based on a small training set and a few learning trials to reflect biological intelligence to some extent. 展开更多
关键词 Olfactory system Neural network Bionic model Pattern recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部