期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于局部卷积神经网络算法的文本分类识别 被引量:1
1
作者 赵革委 胡海东 《微型电脑应用》 2021年第8期136-139,共4页
研究了一种基于局部卷积神经网络的新型文本分类识别算法。该算法主要由5个步骤组成。第一步使用基于搜索字符串的文本词频统计法构成异构文本数据的同构化结果;第二步将上述同构化结果进行三维模糊化处理;第三步使用经过模糊化的数据... 研究了一种基于局部卷积神经网络的新型文本分类识别算法。该算法主要由5个步骤组成。第一步使用基于搜索字符串的文本词频统计法构成异构文本数据的同构化结果;第二步将上述同构化结果进行三维模糊化处理;第三步使用经过模糊化的数据输入到卷积神经网络算法模块中进行机器学习分析;第四步通过针对神经元网络输出结果构建三维数据矩阵,并对该三维数据矩阵进行解模糊处理;第五步将该解模糊处理的数据重新构成数据查询表并将数据查询表内容进行格式化输出。通过主观评价法将这种文本分类识别算法分析结果与4个国内外常用搜索引擎分析结果进行对比,发现所提出的文本分类识别算法有一定的先进性。 展开更多
关键词 局部卷积神经网络 文本分类识别算法 模糊神经网络 异构数据同构化
下载PDF
基于网格分解的东巴象形文字分类算法研究 被引量:3
2
作者 杨玉婷 康厚良 《软件导刊》 2019年第9期196-198,共3页
东巴文字作为人类早期的一种向象形文字、标音文字过渡的图画文字形式,既具有图画文字以图表意特点,又具有现代文字使用简单线条表达含义的特点。东巴文字本身的复杂性使其相关研究一直较少且连贯性不强。从东巴文字的构字要素入手,通... 东巴文字作为人类早期的一种向象形文字、标音文字过渡的图画文字形式,既具有图画文字以图表意特点,又具有现代文字使用简单线条表达含义的特点。东巴文字本身的复杂性使其相关研究一直较少且连贯性不强。从东巴文字的构字要素入手,通过分析东巴文字的组成要素、结构特征及造字习惯,给出适用于东巴象形文字的预处理及基于网格分解的分类识别算法。该算法思路简单、复杂度低、易于实现,能够快速实现不同类型东巴文字的检索和识别,具有较好的缩放和平移不变性,从而为东巴文字的造字研究提供强有力的技术支持,也为研究其它象形文字的检索和识别技术提供重要参考。 展开更多
关键词 网格分解 分类识别算法 东巴象形文字
下载PDF
基于小波和BP神经网络的无线电探测目标识别技术 被引量:7
3
作者 桂延宁 焦李成 张福顺 《电子学报》 EI CAS CSCD 北大核心 2003年第12期1811-1814,共4页
目标识别是智能弹药研发的关键技术之一 ,本文采用小波变换和BP神经网络理论对无线电探测目标识别技术进行了研究 ,给出了分类识别算法 ,并用实测数据进行了实验验证 ,结果表明该识别算法具有很高的目标识别率 .
关键词 神经网络 目标识别 小波变换 无线电探测 分类识别算法
下载PDF
视频帧率上转换检测技术综述 被引量:3
4
作者 何天琦 蒋兴浩 孙锬锋 《网络与信息安全学报》 2018年第10期1-11,共11页
视频帧率上转换检测技术是视频取证技术的一种。为了系统阐述视频上转换检测领域现状,合理导向后续研究,对相关技术进行了综述。首先对相关研究历史和发展进程进行阐述,总结上转换概念及技术框架。然后根据检测技术的目的,对现有算法分... 视频帧率上转换检测技术是视频取证技术的一种。为了系统阐述视频上转换检测领域现状,合理导向后续研究,对相关技术进行了综述。首先对相关研究历史和发展进程进行阐述,总结上转换概念及技术框架。然后根据检测技术的目的,对现有算法分类阐述。最后汇总介绍了视频帧率上转换检测领域的主要研究团队及其研究成果。从算法框架、检测结果等方面对比现有检测技术,提出了两点展望。视频帧率上转换作为视频后处理技术的重要组成部分,目前仍需进一步研究。 展开更多
关键词 视频篡改取证 帧率上转换 帧率上转换检测 周期性分析 篡改算法分类识别
下载PDF
Online Internet Traffic Identification Algorithm Based on Multistage Classifier 被引量:3
5
作者 杜敏 陈兴蜀 谭骏 《China Communications》 SCIE CSCD 2013年第2期89-97,共9页
Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age c... Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age contexts that restrict their ability when they are applied in the current network envi-ronment. For example, the port based ap-proach cannot identify network applications with dynamic ports; the deep packet inspec-tion approach is invalid for encrypted network applications; and the statistical based approach is time-onsuming. In this paper, a novel tech-nique is proposed to classify different catego-ries of network applications. The port based, deep packet inspection based and statistical based approaches are integrated as a multi-stage classifier. The experimental results demonstrate that this approach has high rec-ognition rate which is up to 98% and good performance of real-time for traffic identifica-tion. 展开更多
关键词 traffic identification multistageclassifier SELECTION statistical characteristic featuresupport vector machine
下载PDF
Improved Algorithm of Pattern Classification and Recognition Applied in a Coal Dust Sensor 被引量:1
6
作者 MA Feng-ying SONG Shu 《Journal of China University of Mining and Technology》 EI 2007年第2期168-171,共4页
To resolve the conflicting requirements of measurement precision and real-time performance speed,an im-proved algorithm for pattern classification and recognition was developed. The angular distribution of diffracted ... To resolve the conflicting requirements of measurement precision and real-time performance speed,an im-proved algorithm for pattern classification and recognition was developed. The angular distribution of diffracted light varies with particle size. These patterns could be classified into groups with an innovative classification based upon ref-erence dust samples. After such classification patterns could be recognized easily and rapidly by minimizing the vari-ance between the reference pattern and dust sample eigenvectors. Simulation showed that the maximum recognition speed improves 20 fold. This enables the use of a single-chip,real-time inversion algorithm. An increased number of reference patterns reduced the errors in total and respiring coal dust measurements. Experiments in coal mine testify that the accuracy of sensor achieves 95%. Results indicate the improved algorithm enhances the precision and real-time ca-pability of the coal dust sensor effectively. 展开更多
关键词 coal dust sensor diffraction angular distribution pattern classification: pattern recognition bi-search
下载PDF
A decision hyper plane heuristic based artificial immune network classification algorithm 被引量:4
7
作者 DENG Ze-lin TAN Guan-zheng +1 位作者 HE Pei YE Ji-xiang 《Journal of Central South University》 SCIE EI CAS 2013年第7期1852-1860,共9页
Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane h... Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier. 展开更多
关键词 artificial immune network decision hyper plane recognition ability CLASSIFICATION
下载PDF
光时域分布式技术的电缆外破行为检测系统 被引量:1
8
作者 郑海 《信息技术》 2021年第5期166-172,共7页
针对现有技术中电缆受到外力破坏影响电缆正常运行的问题,提出了新型的电缆外破行为检测方法,利用光频域分布式技术实现电缆外破行为检测。通过采用BP人工神经网络模型对电缆防外破的各种数据信息进行分类,提高了数据计算的效率。该研... 针对现有技术中电缆受到外力破坏影响电缆正常运行的问题,提出了新型的电缆外破行为检测方法,利用光频域分布式技术实现电缆外破行为检测。通过采用BP人工神经网络模型对电缆防外破的各种数据信息进行分类,提高了数据计算的效率。该研究采用BP人工神经网络模型,将造成电缆外破的确定性因素通过属性学习进行故障数据输出,并通过识别与分类算法模型对入侵事件所包含的频率信息进行识别与分类。试验表明,该研究方法正确率达到90%以上,平均偏差为2.3米,定位精准。 展开更多
关键词 电缆外破行为 光频域分布式技术 BP人工神经网络模型 识别分类算法模型 分类算法模型
下载PDF
A NEW LIKELIHOOD-BASED MODULATION CLASSIFICATION ALGORITHM USING MCMC
9
作者 JinXiaoyan ZhouXiyuan 《Journal of Electronics(China)》 2012年第1期17-22,共6页
In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,c... In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset. 展开更多
关键词 Modulation classification Markov Chain Monte Carlo (MCMC) Adaptive Metropolis(AM) Maximum Likelihood (ML) test
下载PDF
Using Kinect for real-time emotion recognition via facial expressions 被引量:4
10
作者 Qi-rong MAO Xin-yu PAN +1 位作者 Yong-zhao ZHAN Xiang-jun SHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第4期272-282,共11页
Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their perfor... Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) arid maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method. 展开更多
关键词 KINECT Emotion recognition Facial expression Real-time classification Fusion algorithm Supportvector machine (SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部