期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
分类识字法及其在对外汉语教学中的应用 被引量:4
1
作者 郭玲 《湖州师范学院学报》 2009年第3期100-103,共4页
汉字是一种特殊的意音文字体系。因此在对外汉语教学中,应根据不同阶段的教学任务而采取不同的分类教学法。这种分类主要包括以形义为中心的分类和以形音为中心的分类。分类教学法对于外国学生学习汉字有相当的积极意义。
关键词 对外汉语教学 汉字教学 分类识字 分阶段习得
下载PDF
中国文化与科学分类识字
2
作者 方英 《黄山学院学报》 2002年第2期34-36,共3页
本文从汉字的文化内涵的角度,阐述了依据汉字特点形成的“科学分类识字法”,从“形”入手,以“意”为核心,把独立的汉字联系起来,组成一组组的字群和义群,是解决汉字繁复庞杂、难学难记问题的一把钥匙。从“形”入手、以“意”为核心的... 本文从汉字的文化内涵的角度,阐述了依据汉字特点形成的“科学分类识字法”,从“形”入手,以“意”为核心,把独立的汉字联系起来,组成一组组的字群和义群,是解决汉字繁复庞杂、难学难记问题的一把钥匙。从“形”入手、以“意”为核心的科学分类,可以指导学生正确理解词义;可以指导学生认字、写字,防止学生写错别字;有助于我们了解汉字的词义系统。同时增加了识字的生动性和趣味性。 展开更多
关键词 中国文化 科学分类识字 间义系统
下载PDF
分类识字教学尝试
3
作者 鲁晓丹 《教育研究与评论(课堂观察)》 2021年第3期83-85,共3页
识字教学是低年级语文教学的重点。为了让学生爱上识字、轻松识字,将学习难度较大的生字分为三类:结构复杂导致难以记忆的、容易写错的、运用起来易混淆的。针对每一类生字的特点,采取适切的教学方法,提高学生识字的效率。
关键词 识字教学 分类识字 小学语文
下载PDF
学、用结合,让识字教学更高效
4
作者 杨丽佳 《新一代(理论版)》 2021年第7期216-216,218,共2页
为了避免识字教学停留在最原始化的音形极端,著名的语文教育专家斯霞老师提出随文识字的教学理念,就是要倡导在语文实践的过程中体现认知性的内在规律,运用鲜活的语境帮助学生更加深入地感知与理解生字。笔者结合识字教学的实践与探索,... 为了避免识字教学停留在最原始化的音形极端,著名的语文教育专家斯霞老师提出随文识字的教学理念,就是要倡导在语文实践的过程中体现认知性的内在规律,运用鲜活的语境帮助学生更加深入地感知与理解生字。笔者结合识字教学的实践与探索,阐述了提高识字教学效率的几点做法:进行分类识字,提高识字效率;紧扣语文要素,开展识字实践;深度理解文字,促进能力形成。 展开更多
关键词 分类识字 识字实践 识字能力
下载PDF
趣味识字教学法在小学语文教学中的应用
5
作者 王国庆 《小学生作文辅导(语文园地)》 2019年第3期96-96,共1页
汉字是语文这门语言学科学习的基础,因而识字教学是低年级语文教学的重点内容。在以往的汉字教学中,教师往往针对汉字的字音、字义、字形等向学生进行细致的讲解和分析,教学模式单一、乏味、无趣,不利于学生兴趣的培养。如何有效地开展... 汉字是语文这门语言学科学习的基础,因而识字教学是低年级语文教学的重点内容。在以往的汉字教学中,教师往往针对汉字的字音、字义、字形等向学生进行细致的讲解和分析,教学模式单一、乏味、无趣,不利于学生兴趣的培养。如何有效地开展识字教学是教师关注的话题。而趣味识字教学作为一种富含趣味性的、行之有效的教学方法在识字教学中被广泛应用。作为小学语文教师,我们应积极探究趣味识字教学的有效运用策略,以此来增添识字教学的趣味性,调动学生的汉字学习兴趣,为汉字教学注入无限生机与活力。 展开更多
关键词 小学语文 趣味识字教学 创设情境 趣味故事 识字分类教学
下载PDF
《荷叶圆圆》教学设计
6
作者 周洪芬 《中学生作文指导》 2021年第7期0156-0156,共1页
创设情境,导入课题;初读课文,整体感知;品读感悟课文,仿写句式;拓展升华,想象说话;回归课文,师生对读。
关键词 分类识字 品读感悟
下载PDF
OBLIQUE PROJECTION REALIZATION OF A KERNEL-BASED NONLINEAR DISCRIMINATOR
7
作者 Liu Benyong Zhang Jing 《Journal of Electronics(China)》 2006年第1期94-98,共5页
Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the t... Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the target class, this paper introduces an oblique projection algorithm to determine the coefficients of a KND so that it is extended to a new version called extended KND (eKND). In eKND construction, the desired output vector of the target class is obliquely projected onto the relevant subspace along the subspace related to other classes. In addition, a simple technique is proposed to calculate the associated oblique projection operator. Experimental results on handwritten digit recognition show that the algorithm performes better than a KND classifier and some other commonly used classifiers. 展开更多
关键词 Pattern recognition Nonlinear classifier Kernel-based Nonlinear Discriminator(KND) Extended KND(eKND) Handwritten digit recognition
下载PDF
Recognition of newspaper printed in Gurumukhi script
8
作者 Rupinder Pal Kaur Manish Kumar Jindal Munish Kumar 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2495-2503,共9页
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c... In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved. 展开更多
关键词 newspaper recognition feature extraction CLASSIFICATION Gurumukhi script random forest
下载PDF
Offline Handwritten Characters Recognition Using Moments Features and Neural Networks
9
作者 Mohamed Abaynarh Lahbib Zenkouar 《Computer Technology and Application》 2015年第1期19-29,共11页
In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon or... In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon orthogonal moments and neural networks classifier. We argue that, given the natural flexibility of neural network models and the extent of parallel processing that they allow, our algorithm is a step forward in character recognition. More importantly, following the approach proposed, we apply our system to two different databases, to examine the ability to recognize patterns under noise. We discover overwhelming support for different style of writing. Moreover, this basic conclusion appears to remain valid across different levels of smoothing and insensitive to the nuances of character patterns. Experiments tested the effect of set size on recognition accuracy which can reach 97.46%. The novelty of the proposed method is independence of size, slant, orientation, and translation. The performance of the proposed method is experimentally evaluated and the promising results and findings are presented. Our method is compared to K-NN (k-nearest neighbors) classifier algorithm; results show performances of our method. 展开更多
关键词 Neural network character recognition orthogonal moments pattern recognition.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部