Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented ...Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented to ethanol. Separated hydrolysis and fermentation (SHF) studies were carried out to produce ethanol from water hyacinth leaves. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions. The optimum pretreatment conditions included T = 135 ℃, t = 30 min, and sulfuric acid concentration = 0.1 M. The residue was enzymatically hydrolyzed using the mixture of enzymes cellulase, xylanase and pectinase. The maximum enzymatic saccharification of cellulosic material (76.8%) was achieved. SHF by mono-culture of Saccharomyces cerevisiae KM1195 achieved the highest yields of ethanol. Furthermore, ethanol production was accomplished with the co-culture ofS. cerevisiae TISTR5048 and Candida tropicalis TISTR5045 which produced the highest increase in ethanol Yield. In this case, the ethanol concentration of 3.42 (g/L), percentage of the theoretical ethanol yield of 99.9%, the ethanol yield of 0.27 g/g and the productivity of 0.22 g/L/h were obtained. This suggested that mild acid pretreatment and co-cultureare promising methods to improve enzymatic hydrolysis and ethanol production from water hyacinth.展开更多
As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approa...As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring,which seems extremely promising and is receiving most attentions.This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology,especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.展开更多
The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm ...The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm and 200 ppm clove oil and applied at two different time period (1 h and 5 h). The microscopic analysis was made on cell wall components of untreated and treated of the straw. According to the research findings, with increasing doses and time of clove oil treatment, particularly, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content of straw significantly (P 〈 0.05) reduced, approximately at the level of 15% for NDF and 13% for ADF, respectively. The lowest NDF, ADF, acid detergent lignin (ADL) and cellulose contents were found in 200 ppm dose and 5 h period. However, the lowest stem section thickness likewise was determined in 5 h period (P 〈 0.05), but there was no significant difference between the dose. Consequently, it could be said that the addition of clove oil have a positive influence on cell wall components and stem section thickness of wheat straw.展开更多
Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of th...Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: For sterilization of medical, pharmaceutical and biological products, treatment of industrial and domestic effluents and sludge, preservation and disinfestations of foods and agricultural products. Other important application are lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel, decontamination of pesticide packing, solid residues remediation, organic compounds removal from wastewater, treatment of effluent from petroleum production units, crosslinking of foams, wires and electric cables. Electron accelerator JOB 188 is, also, very important composite and nanocomposite materials and carbon fibers irradiation, irradiated grafting ion-exchange membranes for fuel cells application, natural polymers and multilayer packages irradiation and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the points of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC 1500/25/04, such as, voltage and RMS (Root-mean-square) current in the oscillator system, high voltage generator and waveform. For this purpose software developed in the Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC 1500/25/04 taking into consideration that radiation processing technology for industrial and environmental applications has been developed and used worldwide.展开更多
The bias stability of differential interferometric fiber optical gyroscope is analyzed.Thermal error causing long-term bias drift are reduced by putting the 90°splice in the middle of the fiber coil and applying ...The bias stability of differential interferometric fiber optical gyroscope is analyzed.Thermal error causing long-term bias drift are reduced by putting the 90°splice in the middle of the fiber coil and applying a wide spectrum light source.Also,a kind of novel optical differential processing,which is much more precise than the electronic differential processing,is proposed for reducing the residual nonreciprocal error in the final differential output.An experimental setup based on optical differential processing was built.An^100 fold reduction in the long-term bias drift is demonstrated experimentally compared with the primary differential interferometric fiber optical gyroscope.展开更多
文摘Water hyacinth is a raw material for long-term sustainable production of cellulosics ethanol. In this study, the acid pretreatment and enzymatic hydrolysis were used to evaluate to produce more sugar, to be fermented to ethanol. Separated hydrolysis and fermentation (SHF) studies were carried out to produce ethanol from water hyacinth leaves. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions. The optimum pretreatment conditions included T = 135 ℃, t = 30 min, and sulfuric acid concentration = 0.1 M. The residue was enzymatically hydrolyzed using the mixture of enzymes cellulase, xylanase and pectinase. The maximum enzymatic saccharification of cellulosic material (76.8%) was achieved. SHF by mono-culture of Saccharomyces cerevisiae KM1195 achieved the highest yields of ethanol. Furthermore, ethanol production was accomplished with the co-culture ofS. cerevisiae TISTR5048 and Candida tropicalis TISTR5045 which produced the highest increase in ethanol Yield. In this case, the ethanol concentration of 3.42 (g/L), percentage of the theoretical ethanol yield of 99.9%, the ethanol yield of 0.27 g/g and the productivity of 0.22 g/L/h were obtained. This suggested that mild acid pretreatment and co-cultureare promising methods to improve enzymatic hydrolysis and ethanol production from water hyacinth.
基金National High Technology Research and Development Plans(the"863"projects) of China(2008AA04Z406)
文摘As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures,Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring,which seems extremely promising and is receiving most attentions.This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology,especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.
文摘The aim of this study was to determine the effects of additions of different doses of clove oil (Syzygium aromaticum L.) on cell wall component of wheat straw. For this purpose, wheat straw was treated with 100 ppm and 200 ppm clove oil and applied at two different time period (1 h and 5 h). The microscopic analysis was made on cell wall components of untreated and treated of the straw. According to the research findings, with increasing doses and time of clove oil treatment, particularly, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content of straw significantly (P 〈 0.05) reduced, approximately at the level of 15% for NDF and 13% for ADF, respectively. The lowest NDF, ADF, acid detergent lignin (ADL) and cellulose contents were found in 200 ppm dose and 5 h period. However, the lowest stem section thickness likewise was determined in 5 h period (P 〈 0.05), but there was no significant difference between the dose. Consequently, it could be said that the addition of clove oil have a positive influence on cell wall components and stem section thickness of wheat straw.
文摘Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: For sterilization of medical, pharmaceutical and biological products, treatment of industrial and domestic effluents and sludge, preservation and disinfestations of foods and agricultural products. Other important application are lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel, decontamination of pesticide packing, solid residues remediation, organic compounds removal from wastewater, treatment of effluent from petroleum production units, crosslinking of foams, wires and electric cables. Electron accelerator JOB 188 is, also, very important composite and nanocomposite materials and carbon fibers irradiation, irradiated grafting ion-exchange membranes for fuel cells application, natural polymers and multilayer packages irradiation and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the points of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC 1500/25/04, such as, voltage and RMS (Root-mean-square) current in the oscillator system, high voltage generator and waveform. For this purpose software developed in the Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC 1500/25/04 taking into consideration that radiation processing technology for industrial and environmental applications has been developed and used worldwide.
基金supported by the National Natural Science Foundation of China(Grant No.61205077)
文摘The bias stability of differential interferometric fiber optical gyroscope is analyzed.Thermal error causing long-term bias drift are reduced by putting the 90°splice in the middle of the fiber coil and applying a wide spectrum light source.Also,a kind of novel optical differential processing,which is much more precise than the electronic differential processing,is proposed for reducing the residual nonreciprocal error in the final differential output.An experimental setup based on optical differential processing was built.An^100 fold reduction in the long-term bias drift is demonstrated experimentally compared with the primary differential interferometric fiber optical gyroscope.