为更好地应对动态多目标优化中的环境变化,提出了一种对差分向量进行角度修正以及分级多种群协同进化(Angle Correction and Hierarchical Multi-Population,ACHMP)的进化算法.根据历史信息,使用无迹卡尔曼滤波模型来预测种群的中心点,...为更好地应对动态多目标优化中的环境变化,提出了一种对差分向量进行角度修正以及分级多种群协同进化(Angle Correction and Hierarchical Multi-Population,ACHMP)的进化算法.根据历史信息,使用无迹卡尔曼滤波模型来预测种群的中心点,通过不同时刻的中心点产生不同的差分向量,再使用无迹卡尔曼滤波对差分向量进行角度修正;提出的多种群协同进化模式将种群分为三部分并使其沿不同的方向进化,子种群监督主种群进化,在提升了算法性能的同时,也保证了种群的多样性.与10种对比算法在不同测试问题上的实验结果显示,ACHMP算法的性能总体优于其他算法,证明了本文提出的角度修正和分级多种群方法在处理动态多目标优化问题时具有较强的竞争力.展开更多
文摘为更好地应对动态多目标优化中的环境变化,提出了一种对差分向量进行角度修正以及分级多种群协同进化(Angle Correction and Hierarchical Multi-Population,ACHMP)的进化算法.根据历史信息,使用无迹卡尔曼滤波模型来预测种群的中心点,通过不同时刻的中心点产生不同的差分向量,再使用无迹卡尔曼滤波对差分向量进行角度修正;提出的多种群协同进化模式将种群分为三部分并使其沿不同的方向进化,子种群监督主种群进化,在提升了算法性能的同时,也保证了种群的多样性.与10种对比算法在不同测试问题上的实验结果显示,ACHMP算法的性能总体优于其他算法,证明了本文提出的角度修正和分级多种群方法在处理动态多目标优化问题时具有较强的竞争力.