Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the ...Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the logical link, which is simple and effective innetwork with additive and constrained concave parameters. We extend the method to network associatedwith multi-parameters. Furthermore, we propose a modified star aggregation algorithm. Simulationsare used to evaluate the performance. The results show that our algorithm is relatively good.展开更多
The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current ...The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current state of network. These disadvantages always put the whole network security management at high risk. This paper establishes a simulation environment, captures the alerts as the experimental data and adopts statistical analysis to seek the vulnerabilities of the services provided by the hosts in the network. According to the factors of the network, the paper introduces the two concepts: Situational Meta and Situational Weight to depict the total security situation. A novel hierarchical algorithm based on analytic hierarchy process (AHP) is proposed to analyze the hierarchy of network and confirm the weighting coefficients. The algorithm can be utilized for modeling security situation, and determining its mathematical expression. Coupled with the statistical results, this paper simulates the security situational trends. Finally, the analysis of the simulation results proves the algorithm efficient and applicable, and provides us with an academic foundation for the implementation in the security situation展开更多
Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age c...Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age contexts that restrict their ability when they are applied in the current network envi-ronment. For example, the port based ap-proach cannot identify network applications with dynamic ports; the deep packet inspec-tion approach is invalid for encrypted network applications; and the statistical based approach is time-onsuming. In this paper, a novel tech-nique is proposed to classify different catego-ries of network applications. The port based, deep packet inspection based and statistical based approaches are integrated as a multi-stage classifier. The experimental results demonstrate that this approach has high rec-ognition rate which is up to 98% and good performance of real-time for traffic identifica-tion.展开更多
文摘Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the logical link, which is simple and effective innetwork with additive and constrained concave parameters. We extend the method to network associatedwith multi-parameters. Furthermore, we propose a modified star aggregation algorithm. Simulationsare used to evaluate the performance. The results show that our algorithm is relatively good.
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA142160) and the National Natural Science Foundation of China (No. 60605019).
文摘The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current state of network. These disadvantages always put the whole network security management at high risk. This paper establishes a simulation environment, captures the alerts as the experimental data and adopts statistical analysis to seek the vulnerabilities of the services provided by the hosts in the network. According to the factors of the network, the paper introduces the two concepts: Situational Meta and Situational Weight to depict the total security situation. A novel hierarchical algorithm based on analytic hierarchy process (AHP) is proposed to analyze the hierarchy of network and confirm the weighting coefficients. The algorithm can be utilized for modeling security situation, and determining its mathematical expression. Coupled with the statistical results, this paper simulates the security situational trends. Finally, the analysis of the simulation results proves the algorithm efficient and applicable, and provides us with an academic foundation for the implementation in the security situation
基金supported by the National Key Technology R&D Program under Grant No. 2012BAH18B05
文摘Internet traffic classification plays an important role in network management. Many approaches have been proposed to clas-sify different categories of Internet traffic. However, these approaches have specific us-age contexts that restrict their ability when they are applied in the current network envi-ronment. For example, the port based ap-proach cannot identify network applications with dynamic ports; the deep packet inspec-tion approach is invalid for encrypted network applications; and the statistical based approach is time-onsuming. In this paper, a novel tech-nique is proposed to classify different catego-ries of network applications. The port based, deep packet inspection based and statistical based approaches are integrated as a multi-stage classifier. The experimental results demonstrate that this approach has high rec-ognition rate which is up to 98% and good performance of real-time for traffic identifica-tion.