A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage mod...A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage model and the accu- racy of a non-equilibrium stage model, a hybrid model is developed to predict the structured packing column in cryogenic air separation. A general solution process for the equilibrium stage model is developed to solve the set of equations of the hybrid model, in which a separation efficiency function is introduced to obtain the resulting tri-diagonal matrix and its solution by the Thomas algorithm. As an example, the algorithm is applied to analyze an upper column of a cryogenic air separation plant with the capacity of 17000 m3·h-1. Rigorous simulations are conducted using Aspen RATEFRAC module to validate the approach. The temperature and composition distributions are in a good agreement with the two methods. The effects of inlet/outlet position and flow rate on the temperature and composition distributions in the column are analyzed. The results demonstrate that the hybrid model and the solution algorithms are effective in analvzin~ the distillation process for a a cryogenic structured packing column.展开更多
A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor ge...A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor geometric information and speed by a stage stacking calculation based on the characteristics of each stage. To develop the compressor elemental stage charac- teristics, the compressor losses, such as incidence losses and friction losses, are mathematically modeled. For a composite sys- tems, for instance a gas turbine power plant, the performance of the multistage centrifugal compressor can be evaluated. Since some important parameters of the compressor model, e.g., the slip factor or, shock loss coefficient (and reference diameter DI, are hard to be determined by empirical laws, a genetic algorithm (GA) is used to solve the parameter estimation problem of the proposed model, and in turn the compressor performance analysis and parameters study are performed. The surge line for the multistage centrifugal compressor can also be determined from the simulation results. Furthermore, the model presented here provides a valuable tool for evaluating the multistage centrifugal compressor performance as a function of various operation parameters.展开更多
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage model and the accu- racy of a non-equilibrium stage model, a hybrid model is developed to predict the structured packing column in cryogenic air separation. A general solution process for the equilibrium stage model is developed to solve the set of equations of the hybrid model, in which a separation efficiency function is introduced to obtain the resulting tri-diagonal matrix and its solution by the Thomas algorithm. As an example, the algorithm is applied to analyze an upper column of a cryogenic air separation plant with the capacity of 17000 m3·h-1. Rigorous simulations are conducted using Aspen RATEFRAC module to validate the approach. The temperature and composition distributions are in a good agreement with the two methods. The effects of inlet/outlet position and flow rate on the temperature and composition distributions in the column are analyzed. The results demonstrate that the hybrid model and the solution algorithms are effective in analvzin~ the distillation process for a a cryogenic structured packing column.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61174130,61004083,61074074)the National Basic Research Program of China ("973" Program) (Grant No.2009CB320601)Fundamental Research Funds for the Central Universities (Grant No. N100604008)
文摘A model for performance prediction of multistage centrifugal compressor is proposed. The model allows the users to predict the compressor performance, e.g. pressure ratio, efficiency and losses using the compressor geometric information and speed by a stage stacking calculation based on the characteristics of each stage. To develop the compressor elemental stage charac- teristics, the compressor losses, such as incidence losses and friction losses, are mathematically modeled. For a composite sys- tems, for instance a gas turbine power plant, the performance of the multistage centrifugal compressor can be evaluated. Since some important parameters of the compressor model, e.g., the slip factor or, shock loss coefficient (and reference diameter DI, are hard to be determined by empirical laws, a genetic algorithm (GA) is used to solve the parameter estimation problem of the proposed model, and in turn the compressor performance analysis and parameters study are performed. The surge line for the multistage centrifugal compressor can also be determined from the simulation results. Furthermore, the model presented here provides a valuable tool for evaluating the multistage centrifugal compressor performance as a function of various operation parameters.