A reagent combination of sodium oleate(NaOl)and salicyl hydroximic acid was employed as the roughing and scavenging collectors,whereas styryl phosphoric acid(SPA)and octanol were employed as the cleaning collectors.Re...A reagent combination of sodium oleate(NaOl)and salicyl hydroximic acid was employed as the roughing and scavenging collectors,whereas styryl phosphoric acid(SPA)and octanol were employed as the cleaning collectors.Results of bench-scale flotation demonstrate that the dosage of SPA can be reduced by about 80%,and that a better flotation index can be obtained using the proposed reagent system.The results of adsorption amount and contact angle measurements indicate that the rutile surface adsorbed not only a large amount of residual NaOl but also SPA and a small amount of NaOl remained on the amphibole surface in strong acidic solution.The hydrophobic difference between rutile and amphibole surfaces was therefore amplified in cleaning,and their further separation became much easier consequently.展开更多
To solve the contradiction between the increasing demand of diverse vehicular wireless applications and the shortage of spectrum resource, a novel cognitive cooperative vehicular ad-hoc network (CC- VANET) framework...To solve the contradiction between the increasing demand of diverse vehicular wireless applications and the shortage of spectrum resource, a novel cognitive cooperative vehicular ad-hoc network (CC- VANET) framework is proposed in this paper. Firstly, we develop an adaptive cognitive spectrum sensing (ACSS) mechanism which can help to trigger and adjust the spectrum sensing window according to network traffic load status and communication quality. And then, Generalized Nash Bargaining SoLution (GNBS), which can achieve a good tradeoff between efficiency and weighted fairness, is proposed to formulate the asymmetric inter- cell resource allocation. Finally, GNBS- Safety (GNBS-S) scheme is developed to enhance the Quality of Service (QoS) of safety applications, especially in the heavy load status, where the bandwidth demanded and supplied cannot be matched well. Furthermore, the primary user activity (PUA) which can cause rate loss to secondary users, is also considered to alleviate its influence to fairness. Simulation results indicate that the proposed CC-VANET scheme can greatly improve the spectrum efficiency and reduce the transmission delay and packet loss rate on the heavy contention status. And GNBS spectrum allocation scheme outperforms both the Max-rain and Max-rate schemes, and canenhance the communication reliability of safety service considerably in CC-VANET.展开更多
基金Projects(11575281,11290165,11305252,U1532260,51474254)supported by the National Natural Science Foundation of China
文摘A reagent combination of sodium oleate(NaOl)and salicyl hydroximic acid was employed as the roughing and scavenging collectors,whereas styryl phosphoric acid(SPA)and octanol were employed as the cleaning collectors.Results of bench-scale flotation demonstrate that the dosage of SPA can be reduced by about 80%,and that a better flotation index can be obtained using the proposed reagent system.The results of adsorption amount and contact angle measurements indicate that the rutile surface adsorbed not only a large amount of residual NaOl but also SPA and a small amount of NaOl remained on the amphibole surface in strong acidic solution.The hydrophobic difference between rutile and amphibole surfaces was therefore amplified in cleaning,and their further separation became much easier consequently.
基金supported in part by program for National Natural Science Foundation of China under Grant No.61271184863 Program of China under Grant No.2013AA013301+1 种基金New Century Excellent Talents in University(NCET-11-0594)Open Fund of the State Key Laboratory of Integrated Services Networks(No.ISN12-03)
文摘To solve the contradiction between the increasing demand of diverse vehicular wireless applications and the shortage of spectrum resource, a novel cognitive cooperative vehicular ad-hoc network (CC- VANET) framework is proposed in this paper. Firstly, we develop an adaptive cognitive spectrum sensing (ACSS) mechanism which can help to trigger and adjust the spectrum sensing window according to network traffic load status and communication quality. And then, Generalized Nash Bargaining SoLution (GNBS), which can achieve a good tradeoff between efficiency and weighted fairness, is proposed to formulate the asymmetric inter- cell resource allocation. Finally, GNBS- Safety (GNBS-S) scheme is developed to enhance the Quality of Service (QoS) of safety applications, especially in the heavy load status, where the bandwidth demanded and supplied cannot be matched well. Furthermore, the primary user activity (PUA) which can cause rate loss to secondary users, is also considered to alleviate its influence to fairness. Simulation results indicate that the proposed CC-VANET scheme can greatly improve the spectrum efficiency and reduce the transmission delay and packet loss rate on the heavy contention status. And GNBS spectrum allocation scheme outperforms both the Max-rain and Max-rate schemes, and canenhance the communication reliability of safety service considerably in CC-VANET.