Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
A single-mode optical fiber with a convex chromatic dispersion profile is proposed for generating a flat supercontinuum(SC).The fiber has normal dispersion and the dispersion parameter D(λ,z) is a convex function of ...A single-mode optical fiber with a convex chromatic dispersion profile is proposed for generating a flat supercontinuum(SC).The fiber has normal dispersion and the dispersion parameter D(λ,z) is a convex function of wavelengths.It is shown from the numerical results that the chromatic dispersion,the flatness of the dispersion curve and the pump conditions have significant effect on SC generation.A flat and broad SC without strong residual pump component can be obtained when the pump wavelength is set in the vicinity of the wavelength at which the fiber has small normal group-velocity dispersion(GVD) and small dispersion slope.The fiber with a smaller normal GVD,a flatter dispersion profile and a higher nonlinear coefficient are more suitable for broad SC generation.展开更多
It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for int...It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.展开更多
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
基金National Basic Research Program of China(2003CB314906)
文摘A single-mode optical fiber with a convex chromatic dispersion profile is proposed for generating a flat supercontinuum(SC).The fiber has normal dispersion and the dispersion parameter D(λ,z) is a convex function of wavelengths.It is shown from the numerical results that the chromatic dispersion,the flatness of the dispersion curve and the pump conditions have significant effect on SC generation.A flat and broad SC without strong residual pump component can be obtained when the pump wavelength is set in the vicinity of the wavelength at which the fiber has small normal group-velocity dispersion(GVD) and small dispersion slope.The fiber with a smaller normal GVD,a flatter dispersion profile and a higher nonlinear coefficient are more suitable for broad SC generation.
基金Supported by the Youth Foundation of Beijing University of Chemical Technology under Grant No. QN0622
文摘It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.