We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existin...We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.展开更多
This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the nu...This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the number of switching layers and internal speedup, for both bufferless and buffered SPPS architecture, are theoretically analyzed. Based on these results, an example of designing a scalable SPPS with 1.28T capacity is presented, and practical considerations on implementing the scheduling algorithm are discussed. Simulations are carried out to investigate the validity and delay performance of the SPPS architecture.展开更多
基金supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806)the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041)supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
文摘We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.
文摘This paper analyzes the Parallel Packet Switch(PPS) architecture and studies how to guarantee its performance. Firstly a model of Stable PPS (SPPS) is proposed. The constraints of traffic scheduling algorithms, the number of switching layers and internal speedup, for both bufferless and buffered SPPS architecture, are theoretically analyzed. Based on these results, an example of designing a scalable SPPS with 1.28T capacity is presented, and practical considerations on implementing the scheduling algorithm are discussed. Simulations are carried out to investigate the validity and delay performance of the SPPS architecture.