基于一种新的特征提取方法——分组重量编码(Encoding on the basis of Grouped Weight,简记为EBGW),采用组分耦合算法作为分类器,从蛋白质一级序列出发对四类同源寡聚体蛋白进行分类研究。结果表明,在Jackknife检验下,基于分组重量编...基于一种新的特征提取方法——分组重量编码(Encoding on the basis of Grouped Weight,简记为EBGW),采用组分耦合算法作为分类器,从蛋白质一级序列出发对四类同源寡聚体蛋白进行分类研究。结果表明,在Jackknife检验下,基于分组重量编码的分类方法总体分类精度达到70.92%,比基于氨基酸组成和加权伪氨基酸成分特征提取方法分别提高20.28和7.53个百分点,说明分组重量编码对于蛋白质同源寡聚体分类是一种高效的特征提取方法。展开更多
从蛋白质序列出发,采用分组重量编码(Encoding Based on Grouped Weight,简记EBGW),并结合最近邻居算法对蛋白质功能进行预测。对酵母(Saccharomyces cerevisiae)蛋白质的1826条序列进行预测,整体预测准确率与其他基于序列信息的蛋白质...从蛋白质序列出发,采用分组重量编码(Encoding Based on Grouped Weight,简记EBGW),并结合最近邻居算法对蛋白质功能进行预测。对酵母(Saccharomyces cerevisiae)蛋白质的1826条序列进行预测,整体预测准确率与其他基于序列信息的蛋白质功能预测方法相当。实验结果表明基于EBGW编码方案的新方法可有效地应用于蛋白质功能预测。展开更多
针对蛋白质序列与所属类别往往是多对多的关系,提出了一种新的基于加权K近邻(KNN)的蛋白质功能预测算法。该算法从蛋白质序列出发,与分组重量编码(Encoding Based on Grouped Weight,简记为EBGW)相结合,并为未知蛋白质序列的近邻赋予一...针对蛋白质序列与所属类别往往是多对多的关系,提出了一种新的基于加权K近邻(KNN)的蛋白质功能预测算法。该算法从蛋白质序列出发,与分组重量编码(Encoding Based on Grouped Weight,简记为EBGW)相结合,并为未知蛋白质序列的近邻赋予一定的权重。对比实验的结果表明,此基于加权KNN的功能预测算法可有效的应用于蛋白质的功能预测。展开更多
文摘基于一种新的特征提取方法——分组重量编码(Encoding on the basis of Grouped Weight,简记为EBGW),采用组分耦合算法作为分类器,从蛋白质一级序列出发对四类同源寡聚体蛋白进行分类研究。结果表明,在Jackknife检验下,基于分组重量编码的分类方法总体分类精度达到70.92%,比基于氨基酸组成和加权伪氨基酸成分特征提取方法分别提高20.28和7.53个百分点,说明分组重量编码对于蛋白质同源寡聚体分类是一种高效的特征提取方法。
文摘从蛋白质序列出发,采用分组重量编码(Encoding Based on Grouped Weight,简记EBGW),并结合最近邻居算法对蛋白质功能进行预测。对酵母(Saccharomyces cerevisiae)蛋白质的1826条序列进行预测,整体预测准确率与其他基于序列信息的蛋白质功能预测方法相当。实验结果表明基于EBGW编码方案的新方法可有效地应用于蛋白质功能预测。
文摘针对蛋白质序列与所属类别往往是多对多的关系,提出了一种新的基于加权K近邻(KNN)的蛋白质功能预测算法。该算法从蛋白质序列出发,与分组重量编码(Encoding Based on Grouped Weight,简记为EBGW)相结合,并为未知蛋白质序列的近邻赋予一定的权重。对比实验的结果表明,此基于加权KNN的功能预测算法可有效的应用于蛋白质的功能预测。