The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t...The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.展开更多
Slow trends in the RR interval(RRI) series should be removed in the preprocessing step to get a reliable result of heart rate variability(HRV) analysis. Re-sampling is required to convert the unevenly sampled RRI seri...Slow trends in the RR interval(RRI) series should be removed in the preprocessing step to get a reliable result of heart rate variability(HRV) analysis. Re-sampling is required to convert the unevenly sampled RRI series into evenly sampled time series when using the widely accepted smoothness priors approach(SPA). Noise is introduced in this process and the information quality is thus compromised. Empirical mode decomposition(EMD) and its variants, were introduced to directly process the unevenly sampled RRI series. Besides, a RR interval model was proposed to fascinate the introduction of standard metrics for the evaluation of the detrending performance. Based on standard metrics including signal-to-noise-ratio in d B(ISNR), mean square error(EMS), and percent root square difference(DPRS), the effectiveness of detrending methods in RR interval analysis were determined. Results demonstrate that complementary ensemble EMD(CEEMD, a variant of EMD) based method has a higher ISNR, a lower EMS and a lower DPRS as well as a better RRI series detrending performance compared with the SPA method, which would in turn lead to a more accurate HRV analysis.展开更多
This paper summarizes partial findings on education about standardization by CNIS in 2008. As of December 31, 2008, 21 universities and colleges in China had established a standardization curriculum. This paper deals ...This paper summarizes partial findings on education about standardization by CNIS in 2008. As of December 31, 2008, 21 universities and colleges in China had established a standardization curriculum. This paper deals with standardization education related to economic management, engineering, agriculture and science of law and summarizes respondents' opinions on teaching performances and design of teaching materials and curriculums.展开更多
基金the National Natural Science Foundation of China (No. 60504024)the Research Project of Zhejiang Provin-cial Education Department (No. 20050905), China
文摘The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.
基金Project(41227803)supported by the National Natural Science Foundation of ChinaProject(KF11011)supported by the State Key Laboratory of Automotive Safety and Energy(Tsinghua University),ChinaProject(DTNH22-08-C-00082)supported by the National Highway Traffic Safety Administration,USA
文摘Slow trends in the RR interval(RRI) series should be removed in the preprocessing step to get a reliable result of heart rate variability(HRV) analysis. Re-sampling is required to convert the unevenly sampled RRI series into evenly sampled time series when using the widely accepted smoothness priors approach(SPA). Noise is introduced in this process and the information quality is thus compromised. Empirical mode decomposition(EMD) and its variants, were introduced to directly process the unevenly sampled RRI series. Besides, a RR interval model was proposed to fascinate the introduction of standard metrics for the evaluation of the detrending performance. Based on standard metrics including signal-to-noise-ratio in d B(ISNR), mean square error(EMS), and percent root square difference(DPRS), the effectiveness of detrending methods in RR interval analysis were determined. Results demonstrate that complementary ensemble EMD(CEEMD, a variant of EMD) based method has a higher ISNR, a lower EMS and a lower DPRS as well as a better RRI series detrending performance compared with the SPA method, which would in turn lead to a more accurate HRV analysis.
基金supported by the Foundation for Scientific Research Program of AQSlQ's(Grant No. 2007QK30)the CNIS's Program on Basic Research Fund (Grant No. 51076S-1467) Study on Feasibility of Establishing the Discipline of StandardizationNo. 10-36 programs funded for scientific research of AQSIQ, Study on Boosting Education about Standardization and the Discipline of Standardization Development.
文摘This paper summarizes partial findings on education about standardization by CNIS in 2008. As of December 31, 2008, 21 universities and colleges in China had established a standardization curriculum. This paper deals with standardization education related to economic management, engineering, agriculture and science of law and summarizes respondents' opinions on teaching performances and design of teaching materials and curriculums.