We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain...We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sumciently high, the sign of the Casimir energy remains negative no matter how great the scale dimension 6 is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10875043partly by the Shanghai Research Foundation under Grant No.07dz22020
文摘We discuss the Casimir effect for massless scalar fields subject to the Diriehlet boundary conditions on the parallel plates at finite temperature in the presence of one fraetal extra eompactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sumciently high, the sign of the Casimir energy remains negative no matter how great the scale dimension 6 is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.