期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
风电场集群接入系统后的聚类分析 被引量:21
1
作者 范国英 史坤鹏 +2 位作者 郑太一 冯利民 李振元 《电网技术》 EI CSCD 北大核心 2011年第11期62-66,共5页
提出了一种基于并网点暂态电压特性的聚类分群方法,即根据并网风电场受系统故障影响程度的不同,识别出动态行为相近的风电场群,进而实现同群风电场的协调控制。为验证所提方法的有效性,在高级可视化软件Powerworld建立了吉林西部电网仿... 提出了一种基于并网点暂态电压特性的聚类分群方法,即根据并网风电场受系统故障影响程度的不同,识别出动态行为相近的风电场群,进而实现同群风电场的协调控制。为验证所提方法的有效性,在高级可视化软件Powerworld建立了吉林西部电网仿真模型,并进行了聚类分析研究。仿真结果证明,该算法不仅结果相对稳定、符合电网实际情况,而且具有一定的脱网风电场动态识别功能。 展开更多
关键词 低电压穿越 暂态电压 分群方法 吉林西部电网 动态识别
下载PDF
基于聚类分析的双馈机组风电场动态等值模型的研究 被引量:19
2
作者 徐玉琴 王娜 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第3期1-5,共5页
针对大型双馈机组风电场,提出一种新的动态等效建模方法。该方法是一种基于双馈风力发电机暂态电压特性的聚类分群方法,即根据风电场内各双馈发电机受系统故障影响程度的不同,识别出电压的动态响应行为相近的风力发电机,并对分群后的双... 针对大型双馈机组风电场,提出一种新的动态等效建模方法。该方法是一种基于双馈风力发电机暂态电压特性的聚类分群方法,即根据风电场内各双馈发电机受系统故障影响程度的不同,识别出电压的动态响应行为相近的风力发电机,并对分群后的双馈发电机及其电气接线系统进行等值聚合,实现了双馈机组风电场的动态等值多机表征。利用电力系统分析综合程序(PSASP 6.2),搭建了双馈机组风电场详细模型和等值模型,并与传统的单机等值模型进行了比较分析。结果表明,所建立的多机等值模型能够较准确地反映双馈机组风电场并网点的动态特性。 展开更多
关键词 双馈风力发电机 暂态电压 风电 分群方法 动态等值
下载PDF
风电场动态等值建模研究综述 被引量:3
3
作者 张弛 吴小康 《陕西电力》 2015年第3期29-34,共6页
从风电场动态等值建模(风速等值、集电网络等值、分群聚类、等值参数计算4个步骤)的角度,探讨风电场动态等值建模研究成果。结果表明,风电场动态等值建模有2种方法:一是提高分群精度,获得唯一聚类结果,进行多机等值;二是降低分群精度,... 从风电场动态等值建模(风速等值、集电网络等值、分群聚类、等值参数计算4个步骤)的角度,探讨风电场动态等值建模研究成果。结果表明,风电场动态等值建模有2种方法:一是提高分群精度,获得唯一聚类结果,进行多机等值;二是降低分群精度,转而确定强相关的待辨识参数,辨识出等值机参数。最后,预测了风电场动态等值未来可能的研究方向。 展开更多
关键词 风电场建模 风速等值 集电网络等值 分群聚类方法 等值参数计算
下载PDF
Different Criteria for the Optimal Number of Clusters and Selection of Variables with R
4
作者 Alessandro Attanasio Maurizio Maravalle Alessio Scalzini 《Journal of Mathematics and System Science》 2013年第9期469-476,共8页
One of the most important problems of clustering is to define the number of classes. In fact, it is not easy to find an appropriate method to measure whether the cluster configuration is acceptable or not. In this pap... One of the most important problems of clustering is to define the number of classes. In fact, it is not easy to find an appropriate method to measure whether the cluster configuration is acceptable or not. In this paper we propose a possible and non-automatic solution considering different criteria of clustering and comparing their results. In this way robust structures of an analyzed dataset can be often caught (or established) and an optimal cluster configuration, which presents a meaningful association, may be defined. In particular, we also focus on the variables which may be used in cluster analysis. In fact, variables which contain little clustering information can cause misleading and not-robustness results. Therefore, three algorithms are employed in this study: K-means partitioning methods, Partitioning Around Medoids (PAM) and the Heuristic Identification of Noisy Variables (HINoV). The results are compared with robust methods ones. 展开更多
关键词 CLUSTERING K-MEANS PAM number of clusters.
下载PDF
Self-organizing dual clustering considering spatial analysis and hybrid distance measures 被引量:10
5
作者 JIAO LiMin LIU YaoLin ZOU Bin 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1268-1278,共11页
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out... Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering. 展开更多
关键词 dual clustering DATAMINING self-organizing feature map Voronoi diagram
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部