In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum whic...In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.展开更多
It is widely believed that cooperative relay technologies can improve the throughput of multicasting in mobile cellular networks significantly, however, the mobility of the relay terrninals may cause frequent relay li...It is widely believed that cooperative relay technologies can improve the throughput of multicasting in mobile cellular networks significantly, however, the mobility of the relay terrninals may cause frequent relay link outage. This paper proposes a stream layered cooperative relay scheme to deal with this problem. In order to study the characteristics of layered relay channels in the scheme, the capacity region is determined based on a single and a multi relay abstract model with streams layering. Besides, to satisfy the cellular network scenario, the results are extended to a wireless Gaussian channel model. The analysis and simulation results show that the scheme guarantees the continuity of the multicast streams, and maintains the high bandwidth of relay channel, with a slight loss on system capacity.展开更多
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2015D07)
文摘In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.
基金Supported by the State Key Program of National Natural Science Foundation of China (No. 60832009), Natural Science Foundation of Bcijing (No. 4102044), Innovative Project for Young Researchers in Central Higher Education Institutions, China (No. 2009RC0119) and New Generation of Broadband Wireless Mobile Communication Networks of Major Projects of National Science and Technology (No.2009ZX03003-003-01).
文摘It is widely believed that cooperative relay technologies can improve the throughput of multicasting in mobile cellular networks significantly, however, the mobility of the relay terrninals may cause frequent relay link outage. This paper proposes a stream layered cooperative relay scheme to deal with this problem. In order to study the characteristics of layered relay channels in the scheme, the capacity region is determined based on a single and a multi relay abstract model with streams layering. Besides, to satisfy the cellular network scenario, the results are extended to a wireless Gaussian channel model. The analysis and simulation results show that the scheme guarantees the continuity of the multicast streams, and maintains the high bandwidth of relay channel, with a slight loss on system capacity.