In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula fo...In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.展开更多
Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This ...Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This will reveal the process of deformation and fracture of coal and predicting dynamic disasters in coal mines.In this study,the G-P(Grassberger and Procaccia) algorithm,calculation steps of the(if only 1 dimension) correlation dimension of time series and the identification standards of chaotic signals are introduced.Furthermore,the correlation dimensions of EME and the acoustic emission(AE) signals of time series during deformation and fracture of coal bodies are calculated and analyzed.The results show that the time series of pulses number of EME and the time series of AE count rate are chaotic and that the saturation embedding dimensions of a K3 coal sample are,respectively,5 and 6.The results can be used to provide basic parameters for predicting of EME and AE time series.展开更多
文摘In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.
基金Projects 50427401 supported by the National Natural Science Foundation of China2006BAK03B06 by the National Eleventh Five-Year Key Science & Technology Project of China+2 种基金the New Century Excellent Talent Program from the Ministry of Education (No.NCET-07-0799)the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China (No.111053)the Beijing Science and Technology New Star Plan (No.2006A081)
文摘Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This will reveal the process of deformation and fracture of coal and predicting dynamic disasters in coal mines.In this study,the G-P(Grassberger and Procaccia) algorithm,calculation steps of the(if only 1 dimension) correlation dimension of time series and the identification standards of chaotic signals are introduced.Furthermore,the correlation dimensions of EME and the acoustic emission(AE) signals of time series during deformation and fracture of coal bodies are calculated and analyzed.The results show that the time series of pulses number of EME and the time series of AE count rate are chaotic and that the saturation embedding dimensions of a K3 coal sample are,respectively,5 and 6.The results can be used to provide basic parameters for predicting of EME and AE time series.