期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多重“分解—集成”策略的物流货运量预测 被引量:6
1
作者 周程 李松 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第1期150-158,共9页
货运量预测是制定物流政策和决定物流基础设施布局的重要依据.针对受多因素影响的货运量预测具备较强非线性和模糊性特征,提出一种基于趋势分解和小波变换的多重'分解—集成'预测方法.利用趋势分解将货运量分解为趋势项和非趋势... 货运量预测是制定物流政策和决定物流基础设施布局的重要依据.针对受多因素影响的货运量预测具备较强非线性和模糊性特征,提出一种基于趋势分解和小波变换的多重'分解—集成'预测方法.利用趋势分解将货运量分解为趋势项和非趋势项,通过小波分解将非趋势项进一步分解成低频项和高频项,分别建立预测模型,选用相加集成得到货运量预测值.实证表明,'分解—集成'的预测策略将非平稳货运量分解为相对平稳的子序列组合,降低了问题复杂度,有效提高了预测性能,与传统的趋势分解预测模型和小波分解预测模型相比,多重'分解—集成'预测模型精度更高. 展开更多
关键词 物流工程 小波变换 趋势分解 分解—集成 物流货运量
下载PDF
基于分解—集成的铁路货运需求预测研究 被引量:6
2
作者 徐菲 任爽 《运筹与管理》 CSSCI CSCD 北大核心 2021年第8期133-138,共6页
铁路货运量受到多种因素影响,准确的预测可以为铁路行业未来规划的编制提供重要的参考依据,也可以使铁路部门制定符合当前货运市场的运输政策。货运量数据具有非线性、不平稳的特点,利用传统的单一预测模型进行预测,很难描述整体特征,... 铁路货运量受到多种因素影响,准确的预测可以为铁路行业未来规划的编制提供重要的参考依据,也可以使铁路部门制定符合当前货运市场的运输政策。货运量数据具有非线性、不平稳的特点,利用传统的单一预测模型进行预测,很难描述整体特征,预测精度有待提高。本文基于分解—集成的原则,利用变分模态分解算法将货运量分解为高频和低频模态,针对各模态特点,分别建立预测模型,将得到的预测结果加总起来作为最终货运量的预测值。实证表明,分解—集成预测方法与传统的单一预测模型相比,提高了预测的准确率,可以很好地应用在铁路货运量需求预测的研究中。 展开更多
关键词 铁路运输 货运量预测 分解—集成 变分模态分解 ARIMA模型 支持向量回归
下载PDF
Design Energy Efficient Water Utilization Systems Allowing Operation Split 被引量:5
3
作者 廖祖维 武锦涛 +2 位作者 蒋斌波 王靖岱 阳永荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期16-20,共5页
This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an im... This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach. 展开更多
关键词 water utilization network heat integration wastewater minimization operation split
下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:6
4
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部