Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world...Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world refineries. In academic studies, refinery scheduling is usually treated as an integrated, large-scale optimization problem,though such complex optimization problems are extremely difficult to solve. In this paper, we proposed a way to exploit the prior knowledge existing in refineries, and developed a decision making system to guide the scheduling process. For a real world fuel oil oriented refinery, ten adjusting process scales are predetermined. A C4.5 decision tree works based on the finished oil demand plan to classify the corresponding category(i.e. adjusting scale). Then,a specific sub-scheduling problem with respect to the determined adjusting scale is solved. The proposed strategy is demonstrated with a scheduling case originated from a real world refinery.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
基金Supported by the National Natural Science Foundation of China(21706282,21276137,61273039,61673236)Science Foundation of China University of Petroleum,Beijing(No.2462017YJRC028)the National High-tech 863 Program of China(2013AA 040702)
文摘Refinery scheduling attracts increasing concerns in both academic and industrial communities in recent years.However, due to the complexity of refinery processes, little has been reported for success use in real world refineries. In academic studies, refinery scheduling is usually treated as an integrated, large-scale optimization problem,though such complex optimization problems are extremely difficult to solve. In this paper, we proposed a way to exploit the prior knowledge existing in refineries, and developed a decision making system to guide the scheduling process. For a real world fuel oil oriented refinery, ten adjusting process scales are predetermined. A C4.5 decision tree works based on the finished oil demand plan to classify the corresponding category(i.e. adjusting scale). Then,a specific sub-scheduling problem with respect to the determined adjusting scale is solved. The proposed strategy is demonstrated with a scheduling case originated from a real world refinery.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.