Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil...Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequenc...In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.展开更多
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi...Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.展开更多
Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa...Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.展开更多
In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault...In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings.展开更多
A hybrid of ensemble empirical mode decomposition and empirical mode decomposition (EEMD-EMD) is introduced to diagnose the valve-slap vibration signal,which is relative to the dominant combustion knock vibration sign...A hybrid of ensemble empirical mode decomposition and empirical mode decomposition (EEMD-EMD) is introduced to diagnose the valve-slap vibration signal,which is relative to the dominant combustion knock vibration signal given out by a diesel engine around the top dead center (TDC).The time-frequency representations of intrinsic mode functions (IMFs) decomposed by EEMD-EMD are obtained by adaptive generalized S transform (AGST).A type 493 diesel engine was used for the experiment,and the result indicates that the valve-slap of the diesel engine is serious,and the vibration frequencies are higher than the combustion knock.With EEMD-EMD-AGST approach,the valve-slap can be identified by the vibration analysis of the diesel engine.展开更多
Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical mean...Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical meanings. This paper studies the single trial extraction of visual evoked potential by combining EMD and wavelet threshold filter. Experimental results showed that the EMD based method can separate the noise out of the event related potentials (ERPs) and effectively extract the weak ERPs in strong background noise, which manifested as the waveform characteristics and root mean square error (RMSE).展开更多
Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on f...Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal.展开更多
This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wande...This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals.展开更多
基金supported by National Natural Science Foundation of China(Grant No.40874059)the National Key Science Engineering Projects of the Ninth Five Year Plan([1999]1423)
文摘Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
基金sponsored by the National Nature Science Foundation of china(Grant No.40774064)National Hi-tech Research and Development Program of China(863 Program)(Grant No.2006AA0AA102-12)
文摘In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results.
基金Projects(61201302,61372023,61671197)supported by the National Natural Science Foundation of ChinaProject(201308330297)supported by the State Scholarship Fund of ChinaProject(LY15F010009)supported by Zhejiang Provincial Natural Science Foundation,China
文摘Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.
基金Projects(61134002,51305358)supported by the National Natural Science Foundation of ChinaProject(PIL1303)supported by the Open Project of State Key Laboratory of Precision Measurement Technology and Instruments,ChinaProject(2682014BR032)supported by the Fundamental Research Funds for the Central Universities,China
文摘Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.
基金The National Natural Science Foundation of China(No.52075095).
文摘In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings.
基金Supported by National Key Technology Research and Development Program of China (No.2011BAE22B05)
文摘A hybrid of ensemble empirical mode decomposition and empirical mode decomposition (EEMD-EMD) is introduced to diagnose the valve-slap vibration signal,which is relative to the dominant combustion knock vibration signal given out by a diesel engine around the top dead center (TDC).The time-frequency representations of intrinsic mode functions (IMFs) decomposed by EEMD-EMD are obtained by adaptive generalized S transform (AGST).A type 493 diesel engine was used for the experiment,and the result indicates that the valve-slap of the diesel engine is serious,and the vibration frequencies are higher than the combustion knock.With EEMD-EMD-AGST approach,the valve-slap can be identified by the vibration analysis of the diesel engine.
基金Natural Science Fund for Colleges and Universities in Jiangsu Province of China grant number: 10 KJB510003+2 种基金Natural Science Fund in Changzhou grant number: CJ20110023 Open Project of the State Key Laboratory of Robotics and System (HIT), and the State Key Laboratory of Cognitive Neurosciences and Learning
文摘Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical meanings. This paper studies the single trial extraction of visual evoked potential by combining EMD and wavelet threshold filter. Experimental results showed that the EMD based method can separate the noise out of the event related potentials (ERPs) and effectively extract the weak ERPs in strong background noise, which manifested as the waveform characteristics and root mean square error (RMSE).
基金supported by the Major State Basic Research Development of China (Grant No. 2011CB706803)National Natural Science Foundation of China (Grant No. 50875098)Important National Science & Technology Specific Projects of China (Grant No. 2009ZX04014-024)
文摘Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal.
基金The Fundamental Research Funds for the Central Universities of Chinagrant number:2010121061 and 2010121062+3 种基金The Natural Science Foundation of Fujiangrant number:2011J01371The National Natural Science Foundation of Chinagrant number:81101115
文摘This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals.