期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分解门控注意力单元的高效Conformer模型
1
作者 李宜亭 屈丹 +2 位作者 杨绪魁 张昊 沈小龙 《计算机工程》 CAS CSCD 北大核心 2023年第5期73-80,共8页
为利用有限的存储和计算资源,在保证Conformer端到端语音识别模型精度的前提下,减少模型参数量并加快训练和识别速度,构建一个基于分解门控注意力单元与低秩分解的高效Conformer模型。在前馈和卷积模块中,通过低秩分解进行计算加速,提高... 为利用有限的存储和计算资源,在保证Conformer端到端语音识别模型精度的前提下,减少模型参数量并加快训练和识别速度,构建一个基于分解门控注意力单元与低秩分解的高效Conformer模型。在前馈和卷积模块中,通过低秩分解进行计算加速,提高Conformer模型的泛化能力。在自注意力模块中,使用分解门控注意力单元降低注意力计算复杂度,同时引入余弦加权机制对门控注意力进行加权保证其向邻近位置集中,提高模型识别精度。在AISHELL-1数据集上的实验结果表明,在引入分解门控注意力单元和余弦编码后,该模型的参数量和语音识别字符错误率(CER)明显降低,尤其当参数量被压缩为Conformer端到端语音识别模型的50%后语音识别CER仅增加了0.34个百分点,并且具有较低的计算复杂度和较高的语音识别精度。 展开更多
关键词 端到端语音识别 Conformer模型 分解门控注意力单元 模型压缩 低秩分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部