期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进K-SVD的英文语料库分词特征提取模型构建
被引量:
2
1
作者
周永英
《自动化技术与应用》
2021年第11期127-130,135,共5页
为提升英文语料库分词精准度,以英文语料库作为研究对象,采用改进的K-SVD算法,构建一个分词特征提取模型。利用稀疏编码与字典更新两个步骤,将初始数据替换为更高级别的特征表示,作为K-SVD算法输入项来获取最优字典。基于模型开发平台,...
为提升英文语料库分词精准度,以英文语料库作为研究对象,采用改进的K-SVD算法,构建一个分词特征提取模型。利用稀疏编码与字典更新两个步骤,将初始数据替换为更高级别的特征表示,作为K-SVD算法输入项来获取最优字典。基于模型开发平台,采用文本预处理模块、文本网络构建模块、特征提取模块以及特征加权模块,构建英文语料库分词特征提取模型。选取近十年的新闻素材作为英文语料库,组成训练集,根据分词特征提取结果与提取效果度量指标数据,验证所建模型具有语义辨别与文本还原的有效性,且准确率与召回率也有显著优越性。
展开更多
关键词
K-SVD算法
英文语料库
分词特征提取
稀疏编码
下载PDF
职称材料
题名
基于改进K-SVD的英文语料库分词特征提取模型构建
被引量:
2
1
作者
周永英
机构
西安财经大学行知学院
出处
《自动化技术与应用》
2021年第11期127-130,135,共5页
文摘
为提升英文语料库分词精准度,以英文语料库作为研究对象,采用改进的K-SVD算法,构建一个分词特征提取模型。利用稀疏编码与字典更新两个步骤,将初始数据替换为更高级别的特征表示,作为K-SVD算法输入项来获取最优字典。基于模型开发平台,采用文本预处理模块、文本网络构建模块、特征提取模块以及特征加权模块,构建英文语料库分词特征提取模型。选取近十年的新闻素材作为英文语料库,组成训练集,根据分词特征提取结果与提取效果度量指标数据,验证所建模型具有语义辨别与文本还原的有效性,且准确率与召回率也有显著优越性。
关键词
K-SVD算法
英文语料库
分词特征提取
稀疏编码
Keywords
K-SVD algorithm
English corpus
word segmentation feature extraction
sparse coding
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进K-SVD的英文语料库分词特征提取模型构建
周永英
《自动化技术与应用》
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部