In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and a...In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.展开更多
In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is ...In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.展开更多
An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface process...An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface processes involved in gas/solid heterogeneous catalysis under real reaction conditionsbecause it can simultaneously collect reference and sample spectra. The influence of gas‐phasemolecular vibration and heat irradiation at real reaction temperatures can therefore be eliminated.The DB‐FTIR spectrometer was successfully used to follow the transformation of isobutene over nano‐sized HZSM‐5 zeolite under real reaction conditions.展开更多
Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal tem...Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawat...It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawater temperature, and the temperature and humidity of the airflow under the collector were measured. Thermal network analysis of the system was carried out. The results show that the airflow is nearly saturated at the entrance of the chimney, and the mean dry-bulb and wet-bulb temperatures of the airflow have increased by 8.4 ℃ and 9.6 ℃, respectively. The radiation heat transfer between the collector and the sky is the biggest heat loss in the system, which is up to 29.1% on average of the solar energy. However, the water evaporation heat is about 23.6% on average of the solar energy. To reduce the heat loss and enhance the water evaporation, it is necessary to reduce the emissivity and thermal conductivity of the collector and increase the evaporation areas.展开更多
This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness i...This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.展开更多
基金The Key Project of Science and Technology of Ministry of Education(No.03081,105085)the SciTech Achievements Transformation Program of Jiangsu Province(No.BA2006068)
文摘In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.
文摘In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.
基金supported by the National Natural Science Foundation of China (21603023)the PetroChina Innovation Foundation, China (2014D-5006-0501)~~
文摘An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface processes involved in gas/solid heterogeneous catalysis under real reaction conditionsbecause it can simultaneously collect reference and sample spectra. The influence of gas‐phasemolecular vibration and heat irradiation at real reaction temperatures can therefore be eliminated.The DB‐FTIR spectrometer was successfully used to follow the transformation of isobutene over nano‐sized HZSM‐5 zeolite under real reaction conditions.
基金Project(50878078) supported by the National Natural Science Foundation of China
文摘Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
基金Supported by Tianjin Technological Development Program Project of China (No05YFGZSF02800 and No06YFSZSF04600)the Key Research Program of the National Eleventh Five-Year Plan of China (No 2006BAA04B03-03)
文摘It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawater temperature, and the temperature and humidity of the airflow under the collector were measured. Thermal network analysis of the system was carried out. The results show that the airflow is nearly saturated at the entrance of the chimney, and the mean dry-bulb and wet-bulb temperatures of the airflow have increased by 8.4 ℃ and 9.6 ℃, respectively. The radiation heat transfer between the collector and the sky is the biggest heat loss in the system, which is up to 29.1% on average of the solar energy. However, the water evaporation heat is about 23.6% on average of the solar energy. To reduce the heat loss and enhance the water evaporation, it is necessary to reduce the emissivity and thermal conductivity of the collector and increase the evaporation areas.
文摘This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.