A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid f...A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid fluidized bed. Beds with column heights of 1200, 1500, and 1800 mm were tried. The clean coal and the railings were subsequently analyzed by float-sink testing. The results showed that the ash and yield of clean coal both decreased with increasing column height, for all three size fractions, and that the ash of the clean coal obtained from tests on the broader size fraction was less than that from the narrower sized fractions. The separation density decreased with increasing column height. The lowest E value was seen for a column height of 1500 ram, for which conditions the separation density was 1.45 g/cm3. The E value was 0.084 for the 0.25-0.5 mm fraction but the corresponding separation density was 1.48 g/cm3, and the E value 0.089, for the broader 0.25-1.0 mm fraction.展开更多
A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accur...A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.展开更多
Application of pneumatic separators in coal beneficiation is increasing rapidly over the last decade primarily due to their low capital and operating costs, and waste handling problems associated with traditional wet ...Application of pneumatic separators in coal beneficiation is increasing rapidly over the last decade primarily due to their low capital and operating costs, and waste handling problems associated with traditional wet processing methods. Large amount of shale/rock that is extracted in coal production can be removed prior to transportation at the mine face by using this methodology. Due to the limited washing facilities in India, most of the thermal power plants burn raw coal from run-of-mine (ROM) to generate electricity. This practice causes poor utilization efficiency, high operating and maintenance costs, and high emission rates for the power plants. One potential method that can be utilized is the air-fluidized inclined vibrating deck technology. The technology was demonstrated on a pilot-scale at different coal washeries in India at a feed rate of 5-ton per hour. The pilot-scale evaluation showed that 20 %-25 % high-ash incombustible material can be eliminated from ROM feed with only minor losses in energy content (〈10 %) from respective ROM coal. Furthermore, a feasibility analysis showed significant economic gains in terms of transportation cost, improving power-plant efficiency, and reducing emissions rates by using the technology.展开更多
Potassium ferrate(K_(2)FeO_(4)) was used as a novel environmental-friendly depressant,and its inhibition effect on flotation performance of arsenopyrite and chalcopyrite using potassium ethyl xanthate(PEX)as a collect...Potassium ferrate(K_(2)FeO_(4)) was used as a novel environmental-friendly depressant,and its inhibition effect on flotation performance of arsenopyrite and chalcopyrite using potassium ethyl xanthate(PEX)as a collector was investigated by flotation experiments,contact angle measurements,adsorption measurements,localized electrochemical impedance spectroscopy(LEIS)measurements,and X-ray photoelectron spectroscopy(XPS)analyses.The results showed that K_(2)FeO_(4)strongly depressed arsenopyrite in a pH range of 4−11,and the flotation separation of chalcopyrite from arsenopyrite could be realized in the presence of 5×10^(−4)mol/L K_(2)FeO_(4)and 5×10^(−5)mol/L PEX at pH 8 or 10.In the presence of K_(2)FeO_(4) and PEX,the contact angle and the xanthate adsorption capacity of arsenopyrite decreased significantly.LEIS measurements showed that the addition of ferrate could significantly increase the impedance of the arsenopyrite surface.XPS analyses further confirmed that ferrate accelerated the oxidation of arsenopyrite surface.展开更多
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd...To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.展开更多
Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time an...Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time and expenditure, and accelerating the breeding process. In this study the factors affecting prediction accuracy(rMG) in GS were evaluated systematically, using six agronomic traits(plant height, ear height, ear length, ear diameter,grain yield per plant and hundred-kernel weight) evaluated in one natural and two biparental populations. The factors examined included marker density, population size, heritability,statistical model, population relationships and the ratio of population size between the training and testing sets, the last being revealed by resampling individuals in different proportions from a population. Prediction accuracy continuously increased as marker density and population size increased and was positively correlated with heritability; rMGshowed a slight gain when the training set increased to three times as large as the testing set. Low predictive performance between unrelated populations could be attributed to different allele frequencies, and predictive ability and prediction accuracy could be improved by including more related lines in the training population. Among the seven statistical models examined, including ridge regression best linear unbiased prediction(RR-BLUP), genomic BLUP(GBLUP), Bayes A, Bayes B, Bayes C, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO), and reproducing kernel Hilbert space(RKHS), the RKHS and additive-dominance model(Add + Dom model) showed credible ability for capturing non-additive effects, particularly for complex traits with low heritability. Empirical evidence generated in this study for GS-relevant factors will help plant breeders to develop GS-assisted breeding strategies for more efficient development of varieties.展开更多
Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity benefici...Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.展开更多
Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has receiv...Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has received wide attention, particularly in countries and regions experiencing drought and water shortages. During the process of dense coal gas-solid fluidized bed beneficiation, the material is stratified according to its density; the high density material layer remains at the bed bottom, and thus the high density coarse particle bed becomes an important infuencing factor in fluidized bed stability. In the steady fluidization stage, a small number of large radius bubbles are the direct cause of unsteady fluidization in the tradi- tional fluidized bed. The dispersion effect of the secondary air distribution bed for air flow is mainly apparent in the gas region; when the particle size exceeds 13 mm, the secondary air distribution bed has a synergistic effect on the density stability of the upper fluidized layer. When the particle size is small, especially when less than 6 ram, particles will constantly move, accounting for instability of the secondary air distribution bed and distorting the stability of the upper fluidized bed. Under optimum operation conditions, the probable deviation E of gas-solid separation fluidized with a high density coarse particle layer can be as low as 0.085 g/cm3.展开更多
Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadm...Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.展开更多
Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO sy...Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.展开更多
Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t...Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.展开更多
Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior...Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior. In this work, the effect of Mn2+ on quartz flotation was investigated through flotation tests. It was found that quartz can be depressed with Mn2+ and floated with dodecylamine in the pH region 7-8. In order to prove the validity of the findings, UV spectrophotometry, FTIR and SEM-EDS were carried out. UV spectrophotometry tests results show that Mn2+ can competitive adsorb with RNH3+ in the surface of quartz at acidic and neutral pH values. The FTIR measurements and SEM-EDS analysis indicate that Mn2+ forms precipitation and adsorbs on the negatively charged quartz surface, it induces quartz recovery dropping in alkaline pH. Furthermore, in the case of sodium hexametaphosphate(SH), sodium silicate or citric acid, the effects of Mn2+ were also studied. This depression in the given Mn2+ did not disappear. Citric acid is an appropriate modifier to separate quartz depressed by Mn2+ from other ores at pH 7.展开更多
The characteristics of density yield curve of coal and distribution curve of products can be described with median, quartile deviation, the quartile measure of skewness and kurtosis like K. On the basis of 16 groups o...The characteristics of density yield curve of coal and distribution curve of products can be described with median, quartile deviation, the quartile measure of skewness and kurtosis like K. On the basis of 16 groups of coal density composition data and their jigging stratification data derived from the pilot jig, the regression analysis has been done for the relationship between the characteristic values of the density curve and the characteristic values of the distribution curve.The results show as follow: (1) The bigger the skewness of the density curve, the bigger the probable error (Ep) and imperfection (I ) are. (2) The bigger the median of density curve, the smaller the probable error or imperfection is. (3) The characteristic values of density curve have no influence on the kurtosis K of the distribution curve.展开更多
The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most impor...The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.展开更多
The extraction of ethanol with the solvents of aldehydes mixed with m-xylene was studied for the bioethanol concentration process.Furfural and benzaldehyde were selected as extraction solvents,with which the solubilit...The extraction of ethanol with the solvents of aldehydes mixed with m-xylene was studied for the bioethanol concentration process.Furfural and benzaldehyde were selected as extraction solvents,with which the solubility of water is small,expecting large distribution coefficient of ethanol.The liquid–liquid two-phase region was the largest with m-xylene solvent,followed by benzaldehyde and furfural.The region of two liquid–liquid phase became larger with the mixed solvent of m-xylene and furfural than that with furfural solvent.The NRTL model was applied to the ethanol–water–furfural–m-xylene system,and the model could well express the liquid–liquid equilibrium of the system.For any solvent used in this study,the separation selectivity of ethanol relative to water decreased as the distribution coefficient of ethanol increased.The separation selectivity with m-xylene was the largest among the employed solvents,but the distribution coefficient was the smallest.The solvent mixture of furfural and m-xylene showed relatively high distribution coefficient of ethanol and separation selectivity,even in the higher mass fraction of m-xylene in the solvent phase.The ethanol extraction with a countercurrent multistage extractor by a continuous operation was simulated to evaluate the extraction performance.The ethanol content could be concentrated in the extract phase with relatively small number of extraction stages but low yield of ethanol was obtained.展开更多
This study was performed to investigate the effects of the cyclonic separation mechanism on the removal of magnesium from phosphate ore. An analysis of the particle-bubble collision mechanism in a cyclonic force field...This study was performed to investigate the effects of the cyclonic separation mechanism on the removal of magnesium from phosphate ore. An analysis of the particle-bubble collision mechanism in a cyclonic force field was used to design two different pulp circulation systems for a cyclonic-static micro-bubble flotation column (FCSMC). Experiments comparing the two conditions were then conducted. Size analysis of the feed and separated products was conducted with a BXF cyclone size analyzer. The results show that about 34.60% of the total MgO content in the feed exists in the -10 μm fraction. This demonstrates that magnesium removal from phosphate ore has the characteristics of a micro-fine particle flotation problem. Under conditions of cyclonic circulation the MgO level of the concentrate is 1.74g, which is lower than that obtained from the column operated in direct-flow circulation by 0.34%, These results indicate that the cyclonic circulation mechanism of the FCSMC can promote removal of micro-fine particles containing magnesium. This is attributed to the function of surface flotation and to the reduction of the lower separation limit under conditions of cyclonic circulation.展开更多
Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contrib...Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.展开更多
基金supports for this work provided by the National Natural Science Foundation of China (No. 50974120)the Fundamental Research Funds for the Central Universities (No.2010QNB08)
文摘A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid fluidized bed. Beds with column heights of 1200, 1500, and 1800 mm were tried. The clean coal and the railings were subsequently analyzed by float-sink testing. The results showed that the ash and yield of clean coal both decreased with increasing column height, for all three size fractions, and that the ash of the clean coal obtained from tests on the broader size fraction was less than that from the narrower sized fractions. The separation density decreased with increasing column height. The lowest E value was seen for a column height of 1500 ram, for which conditions the separation density was 1.45 g/cm3. The E value was 0.084 for the 0.25-0.5 mm fraction but the corresponding separation density was 1.48 g/cm3, and the E value 0.089, for the broader 0.25-1.0 mm fraction.
基金Project(2003BA808A15-2-4) supported by the National Scientific and Technologies Key Task Program
文摘A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.
文摘Application of pneumatic separators in coal beneficiation is increasing rapidly over the last decade primarily due to their low capital and operating costs, and waste handling problems associated with traditional wet processing methods. Large amount of shale/rock that is extracted in coal production can be removed prior to transportation at the mine face by using this methodology. Due to the limited washing facilities in India, most of the thermal power plants burn raw coal from run-of-mine (ROM) to generate electricity. This practice causes poor utilization efficiency, high operating and maintenance costs, and high emission rates for the power plants. One potential method that can be utilized is the air-fluidized inclined vibrating deck technology. The technology was demonstrated on a pilot-scale at different coal washeries in India at a feed rate of 5-ton per hour. The pilot-scale evaluation showed that 20 %-25 % high-ash incombustible material can be eliminated from ROM feed with only minor losses in energy content (〈10 %) from respective ROM coal. Furthermore, a feasibility analysis showed significant economic gains in terms of transportation cost, improving power-plant efficiency, and reducing emissions rates by using the technology.
基金the National Natural Science Foundation of China(Nos.52074139,51904129)Basic Research Project of Yunnan Province,China(No.202001AU070028)+2 种基金Basic Research Project for High-level Talents of Yunnan Province,China(No.KKS2202152011)Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,China(No.CNMRCUKF1602)the Testing and Analyzing Funds of Kunming University of Science and Technology,China(No.2020T20150055).
文摘Potassium ferrate(K_(2)FeO_(4)) was used as a novel environmental-friendly depressant,and its inhibition effect on flotation performance of arsenopyrite and chalcopyrite using potassium ethyl xanthate(PEX)as a collector was investigated by flotation experiments,contact angle measurements,adsorption measurements,localized electrochemical impedance spectroscopy(LEIS)measurements,and X-ray photoelectron spectroscopy(XPS)analyses.The results showed that K_(2)FeO_(4)strongly depressed arsenopyrite in a pH range of 4−11,and the flotation separation of chalcopyrite from arsenopyrite could be realized in the presence of 5×10^(−4)mol/L K_(2)FeO_(4)and 5×10^(−5)mol/L PEX at pH 8 or 10.In the presence of K_(2)FeO_(4) and PEX,the contact angle and the xanthate adsorption capacity of arsenopyrite decreased significantly.LEIS measurements showed that the addition of ferrate could significantly increase the impedance of the arsenopyrite surface.XPS analyses further confirmed that ferrate accelerated the oxidation of arsenopyrite surface.
基金supported by the National Natural Science Foundation of China(No.51474213)the National Natural Science Foundation of China(No.51374205)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014XT05)A Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity.
基金supported by the National Basic Research Program of China(2014 CB138206)National Key Research and Development Program of China(2016YFD0101803)+3 种基金the National Natural Science Foundation of China-CGIAR International Collaborative Program(31361140364)the Agricultural Science and Technology Innovation Program(ASTIP)of CAASFundamental Research Funds for Central Non-Profit of Institute of Crop Sciences,CAAS(1610092016124)supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE
文摘Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time and expenditure, and accelerating the breeding process. In this study the factors affecting prediction accuracy(rMG) in GS were evaluated systematically, using six agronomic traits(plant height, ear height, ear length, ear diameter,grain yield per plant and hundred-kernel weight) evaluated in one natural and two biparental populations. The factors examined included marker density, population size, heritability,statistical model, population relationships and the ratio of population size between the training and testing sets, the last being revealed by resampling individuals in different proportions from a population. Prediction accuracy continuously increased as marker density and population size increased and was positively correlated with heritability; rMGshowed a slight gain when the training set increased to three times as large as the testing set. Low predictive performance between unrelated populations could be attributed to different allele frequencies, and predictive ability and prediction accuracy could be improved by including more related lines in the training population. Among the seven statistical models examined, including ridge regression best linear unbiased prediction(RR-BLUP), genomic BLUP(GBLUP), Bayes A, Bayes B, Bayes C, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO), and reproducing kernel Hilbert space(RKHS), the RKHS and additive-dominance model(Add + Dom model) showed credible ability for capturing non-additive effects, particularly for complex traits with low heritability. Empirical evidence generated in this study for GS-relevant factors will help plant breeders to develop GS-assisted breeding strategies for more efficient development of varieties.
基金Supported by the Young Science Foundation of China(50025411)the Doctoral Science Research Foundation of University(20030290015)
文摘Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.
基金the Key Project of National Fundamental Research and Development of China (No. 2012CB214904)the National Natural Science Foundation of China for Innovative Research Group (No. 51221462)+1 种基金the National Natural Science Foundation of China (Nos. 51134022 and 51174203)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120095130001)
文摘Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has received wide attention, particularly in countries and regions experiencing drought and water shortages. During the process of dense coal gas-solid fluidized bed beneficiation, the material is stratified according to its density; the high density material layer remains at the bed bottom, and thus the high density coarse particle bed becomes an important infuencing factor in fluidized bed stability. In the steady fluidization stage, a small number of large radius bubbles are the direct cause of unsteady fluidization in the tradi- tional fluidized bed. The dispersion effect of the secondary air distribution bed for air flow is mainly apparent in the gas region; when the particle size exceeds 13 mm, the secondary air distribution bed has a synergistic effect on the density stability of the upper fluidized layer. When the particle size is small, especially when less than 6 ram, particles will constantly move, accounting for instability of the secondary air distribution bed and distorting the stability of the upper fluidized bed. Under optimum operation conditions, the probable deviation E of gas-solid separation fluidized with a high density coarse particle layer can be as low as 0.085 g/cm3.
基金Projects(50774014,50734005) supported by the National Natural Science Foundation of ChinaProject(2008AA03Z514) supported by the National High-tech Research and Development Program of China
文摘Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.
基金supported in part by National Natural Science Foundation of China No.61171080
文摘Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.
文摘Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.
基金Projects(21176026,21176242)supported by the National Natural Science Foundation of China
文摘Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior. In this work, the effect of Mn2+ on quartz flotation was investigated through flotation tests. It was found that quartz can be depressed with Mn2+ and floated with dodecylamine in the pH region 7-8. In order to prove the validity of the findings, UV spectrophotometry, FTIR and SEM-EDS were carried out. UV spectrophotometry tests results show that Mn2+ can competitive adsorb with RNH3+ in the surface of quartz at acidic and neutral pH values. The FTIR measurements and SEM-EDS analysis indicate that Mn2+ forms precipitation and adsorbs on the negatively charged quartz surface, it induces quartz recovery dropping in alkaline pH. Furthermore, in the case of sodium hexametaphosphate(SH), sodium silicate or citric acid, the effects of Mn2+ were also studied. This depression in the given Mn2+ did not disappear. Citric acid is an appropriate modifier to separate quartz depressed by Mn2+ from other ores at pH 7.
文摘The characteristics of density yield curve of coal and distribution curve of products can be described with median, quartile deviation, the quartile measure of skewness and kurtosis like K. On the basis of 16 groups of coal density composition data and their jigging stratification data derived from the pilot jig, the regression analysis has been done for the relationship between the characteristic values of the density curve and the characteristic values of the distribution curve.The results show as follow: (1) The bigger the skewness of the density curve, the bigger the probable error (Ep) and imperfection (I ) are. (2) The bigger the median of density curve, the smaller the probable error or imperfection is. (3) The characteristic values of density curve have no influence on the kurtosis K of the distribution curve.
基金Project supported by the Collaborative Research and Development Program of Natural Sciences and Engineering Research Council of Canada
文摘The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.
文摘The extraction of ethanol with the solvents of aldehydes mixed with m-xylene was studied for the bioethanol concentration process.Furfural and benzaldehyde were selected as extraction solvents,with which the solubility of water is small,expecting large distribution coefficient of ethanol.The liquid–liquid two-phase region was the largest with m-xylene solvent,followed by benzaldehyde and furfural.The region of two liquid–liquid phase became larger with the mixed solvent of m-xylene and furfural than that with furfural solvent.The NRTL model was applied to the ethanol–water–furfural–m-xylene system,and the model could well express the liquid–liquid equilibrium of the system.For any solvent used in this study,the separation selectivity of ethanol relative to water decreased as the distribution coefficient of ethanol increased.The separation selectivity with m-xylene was the largest among the employed solvents,but the distribution coefficient was the smallest.The solvent mixture of furfural and m-xylene showed relatively high distribution coefficient of ethanol and separation selectivity,even in the higher mass fraction of m-xylene in the solvent phase.The ethanol extraction with a countercurrent multistage extractor by a continuous operation was simulated to evaluate the extraction performance.The ethanol content could be concentrated in the extract phase with relatively small number of extraction stages but low yield of ethanol was obtained.
基金supported by the National Key Technology R&D Program for the 11th Five-Year Plan of China(No. 2008BAB31B01)
文摘This study was performed to investigate the effects of the cyclonic separation mechanism on the removal of magnesium from phosphate ore. An analysis of the particle-bubble collision mechanism in a cyclonic force field was used to design two different pulp circulation systems for a cyclonic-static micro-bubble flotation column (FCSMC). Experiments comparing the two conditions were then conducted. Size analysis of the feed and separated products was conducted with a BXF cyclone size analyzer. The results show that about 34.60% of the total MgO content in the feed exists in the -10 μm fraction. This demonstrates that magnesium removal from phosphate ore has the characteristics of a micro-fine particle flotation problem. Under conditions of cyclonic circulation the MgO level of the concentrate is 1.74g, which is lower than that obtained from the column operated in direct-flow circulation by 0.34%, These results indicate that the cyclonic circulation mechanism of the FCSMC can promote removal of micro-fine particles containing magnesium. This is attributed to the function of surface flotation and to the reduction of the lower separation limit under conditions of cyclonic circulation.
文摘Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.