The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent properties, the materia...The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent properties, the material constants were further considered as functions of temperature. A solution method based on state-space formulations with a laminate approximate model was proposed. For a thin plate, the method was clarified by comparison with the thin plate theory. The influences of material inhomogeneity and temperature-dependent characteristics were finally discussed through numerical examples.展开更多
With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works...With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.展开更多
文摘The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent properties, the material constants were further considered as functions of temperature. A solution method based on state-space formulations with a laminate approximate model was proposed. For a thin plate, the method was clarified by comparison with the thin plate theory. The influences of material inhomogeneity and temperature-dependent characteristics were finally discussed through numerical examples.
文摘With the ability of representing the association and inner-feedback between plant morphological structure and physiological functions, functional-structural plant modeling (FSPM) approach has been used in many works, trying to better understand the mechanisms of integrating plant functions and its structure, and their communication with environmental factors. To do so, an FSPM of rice seedling was developed in this study, including structural morphogenetic model, photosynthetic model and biomass partitioning module. It can thus describe the developmental course of the rice structure dynamically based on the processes of biomass producing and partitioning. Furthermore, the processes of nitrogen metabolism, which influence the N content and growth dynamics of the virtual rice, were also considered. The model was developed with L-system on a platform established with Java programming language, which took over the parsing and visualization of the L-system strings to 3D objects using Java 3D extended library. The physiological processes in the model can be modified and further improved to gradually meet the needs for modeling the whole life cycle of rice, e.g., considering the respiration, and interaction with other environmental factors like CO2, temperature, etc.. The model was developed to provide a platform to systematically study and understand how plant systems like rice seedling work. The model and the virtualization platform can be expanded to provide decision support on N fertilizer application for the rice seedling and the other crops.