The allocation of resources in English teaching can improve the ability of resource sharing, in order to optimize the allocation of resources, so as to improve the performance of English teaching, and promote the cons...The allocation of resources in English teaching can improve the ability of resource sharing, in order to optimize the allocation of resources, so as to improve the performance of English teaching, and promote the construction of English teaching resources database, a method of optimizing the allocation of English teaching resources is proposed based on network cloud platform. Text semantic key words conceptual decision tree model is constructed for massive English teaching resources allocation, semantic information conversion method is used to compute key semantic features of English Teaching resources, the concept convergence point of English Teaching resource allocation is formed in semantic model. According to the set between the upper and lower relationship, a decision tree model of English Teaching semantic subject words is constructed, semantic conversion and information extraction are realized. English teaching resources optimization allocation simulation is taken in the cloud platform, simulation results show that the scheduling performance of English teaching resources is better, and the adaptive allocation ability of English teaching resources is stronger, and the resource utilization rate is higher.展开更多
This paper studies an interference coordination method by means of spectrum allocation in Long-Term Evolution (LTE) multi-cell scenario that comprises of macrocells and femtocells. The purpose is to maximize the total...This paper studies an interference coordination method by means of spectrum allocation in Long-Term Evolution (LTE) multi-cell scenario that comprises of macrocells and femtocells. The purpose is to maximize the total throughput of femtocells while ensuring the Signal-to-Interference plus Noise Ratio (SINR) of the edge macro mobile stations (mMSs) and the edge femtocell Mobile Stations (fMSs). A new spectrum allocation algorithm based on graph theory is proposed to reduce the interference. Firstly, the ratio of Resource Blocks (RBs) that mMSs occupy is obtained by genetic algorithm. Then, after considering the impact of the macro Base Stations (mBSs) and small scale fading to the fMS on different RBs, multi-interference graphs are established and the spectrum is allocated dynamically. The simulation results show that the proposed algorithm can meet the Quality of Service (QoS) requirements of the mMSs. It can strike a balance between the edge fMSs' throughput and the whole fMSs' throughput.展开更多
同步数字体系(Synchronous Digital Hierarchy,SDH)光传输具有传递速度快、传输容量大等特点,且易于构建环网提升可靠性。SDH光环网在民用通信网络和电力、铁路等专用通信网络中应用广泛,能够通过网络管理系统提供强大的操作、维护及管...同步数字体系(Synchronous Digital Hierarchy,SDH)光传输具有传递速度快、传输容量大等特点,且易于构建环网提升可靠性。SDH光环网在民用通信网络和电力、铁路等专用通信网络中应用广泛,能够通过网络管理系统提供强大的操作、维护及管理能力。随着SDH光环网在机动通信网络的推广应用,集中式的网络管理系统无法满足机动通信网络即插即用的需求。本文在深入研究SDH光环网网络管理技术的基础上,结合机动通信网络的组网需求,设计站号自动分配协议和拓扑自动发现算法,并在设备中进行了验证。结果表明,设计的方法能够大幅简化设备配置,提供网络拓扑呈现和光纤连接故障定位能力。展开更多
A resource allocation scheme with the considerations of user fairness and load balancing is proposed in orthogonal frequency division multiple access (OFDMA)-based relay networks. The optimal resource allocation sch...A resource allocation scheme with the considerations of user fairness and load balancing is proposed in orthogonal frequency division multiple access (OFDMA)-based relay networks. The optimal resource allocation scheme is formulated mathematically to maximize the minimum achievable rate among all user equipments (UEs) for fairnegs improvement. The optimal problem has been proved to be N-P-hard and it is prohibitive to find the optimal solution for its computational complexity. Accordingly, this paper proposes a suboptimal scheme which considers not only user fairness but also load balancing among base stations (BS) and relay stations (RSs) during resource allocation procedure. The suboptimal scheme takes the traffic load of access nodes (BS and RSs) into consideration to balance the system traffic load, which would prevent them from overloading and throughput degradation. Simulation results show that the suboptimal scheme performs similarly to the optimal solution and can enhance the system fairness and load balancing performance significantly compared with the traditional schemes.展开更多
In orthogonal frequency division multiple access(OFDMA) based femtocell networks,the co-tier interference among femto base stations(FBS) becomes important in multiuser and densely deployed environment.In order to miti...In orthogonal frequency division multiple access(OFDMA) based femtocell networks,the co-tier interference among femto base stations(FBS) becomes important in multiuser and densely deployed environment.In order to mitigate the co-tier interference and enhance the system total throughput,this paper proposed a best effort spectrum allocation scheme based on the extension of graph theory.In the scheme,a controller was proposed to collect the channel state information(CSI)of all femtocell user equipments(FUEs) in a certain range.Then,the controller evaluated the signal-to-interference Ratio(SIR) of each FUE and determined the set of its interference neighbors.By calculating the received power matrix(RPM) among FUEs and building interference graph matrix(IGM),different spectrum resource blocks(RBs) were assigned to the users with interference relation,while users without interference relation shared the same RBs,which could increase the spectrum efficiency.Simulation results show that the proposed algorithm can significantly improve the RB usage efficiency compared with the basic graph coloring theory,and more than 80% improvement can be acquired in dense deployment scenario.Besides,the throughput of both cell edge macro user equipments(MUEs) and cell edge FUEs is guaranteed on the premise of low interference.展开更多
In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significa...In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significantly improve the utilization efficiency of computing resources. In this paper,we study the computing resource allocation strategy for one VBS by considering the non-negligible effect of delay introduced by switches. Specifically,we formulate the VBS's sum computing rate maximization as a set optimization problem. To address this problem,we firstly propose a computing resource schedule algorithm,namely,weight before one-step-greedy(WBOSG),which has linear computation complexity and considerable performance. Then,OSG retreat(OSG-R) algorithm is developed to further improve the system performance at the expense of computational complexity. Simulation results under practical setting are provided to validate the proposed two algorithms.展开更多
The problem of distributed proportional fair inter-cell frequency allocation for flat-structured cellular systems is studied in this paper. We firstly propose a framework of the frequency allocation in which the whole...The problem of distributed proportional fair inter-cell frequency allocation for flat-structured cellular systems is studied in this paper. We firstly propose a framework of the frequency allocation in which the whole frequency allocation process is decomposed into many consecutive stages, then identify that for each stage the key is to find the Maximum Weight Independent Set (MWIS) in a given weighted conflict graph in the distributed manner. A new distributed algorithm for MWIS is described in which each node iteratively exchanges messages with neighbors. With this distributed MWIS algorithm, a new distributed proportional fair frequency allocation scheme is presented. The performance of the proposed algorithm is tested in computer experiments simulating the Long Term Evolution (LTE) cellular systems. Simulation results show the performance of the proposed distributed proportional fair frequency allocation scheme is comparable with the centralized ones.展开更多
文摘The allocation of resources in English teaching can improve the ability of resource sharing, in order to optimize the allocation of resources, so as to improve the performance of English teaching, and promote the construction of English teaching resources database, a method of optimizing the allocation of English teaching resources is proposed based on network cloud platform. Text semantic key words conceptual decision tree model is constructed for massive English teaching resources allocation, semantic information conversion method is used to compute key semantic features of English Teaching resources, the concept convergence point of English Teaching resource allocation is formed in semantic model. According to the set between the upper and lower relationship, a decision tree model of English Teaching semantic subject words is constructed, semantic conversion and information extraction are realized. English teaching resources optimization allocation simulation is taken in the cloud platform, simulation results show that the scheduling performance of English teaching resources is better, and the adaptive allocation ability of English teaching resources is stronger, and the resource utilization rate is higher.
基金Supported by National Natural Science Foundation of China (61171094, 61071092)National Science & Technology Key Project (2011ZX03001-006-02, 2011ZX03005-004-03)Key Project of Jiangsu Provincial Natural Science Foundation (BK2011027)
文摘This paper studies an interference coordination method by means of spectrum allocation in Long-Term Evolution (LTE) multi-cell scenario that comprises of macrocells and femtocells. The purpose is to maximize the total throughput of femtocells while ensuring the Signal-to-Interference plus Noise Ratio (SINR) of the edge macro mobile stations (mMSs) and the edge femtocell Mobile Stations (fMSs). A new spectrum allocation algorithm based on graph theory is proposed to reduce the interference. Firstly, the ratio of Resource Blocks (RBs) that mMSs occupy is obtained by genetic algorithm. Then, after considering the impact of the macro Base Stations (mBSs) and small scale fading to the fMS on different RBs, multi-interference graphs are established and the spectrum is allocated dynamically. The simulation results show that the proposed algorithm can meet the Quality of Service (QoS) requirements of the mMSs. It can strike a balance between the edge fMSs' throughput and the whole fMSs' throughput.
文摘同步数字体系(Synchronous Digital Hierarchy,SDH)光传输具有传递速度快、传输容量大等特点,且易于构建环网提升可靠性。SDH光环网在民用通信网络和电力、铁路等专用通信网络中应用广泛,能够通过网络管理系统提供强大的操作、维护及管理能力。随着SDH光环网在机动通信网络的推广应用,集中式的网络管理系统无法满足机动通信网络即插即用的需求。本文在深入研究SDH光环网网络管理技术的基础上,结合机动通信网络的组网需求,设计站号自动分配协议和拓扑自动发现算法,并在设备中进行了验证。结果表明,设计的方法能够大幅简化设备配置,提供网络拓扑呈现和光纤连接故障定位能力。
基金) Supported by the National Natural Science Foundation of China (No. 61001115), the National Major Science and Technology Project (No. 2011ZX03001- 007-03), and the Natural Science Foundation of Beijing (No. 4102044).
文摘A resource allocation scheme with the considerations of user fairness and load balancing is proposed in orthogonal frequency division multiple access (OFDMA)-based relay networks. The optimal resource allocation scheme is formulated mathematically to maximize the minimum achievable rate among all user equipments (UEs) for fairnegs improvement. The optimal problem has been proved to be N-P-hard and it is prohibitive to find the optimal solution for its computational complexity. Accordingly, this paper proposes a suboptimal scheme which considers not only user fairness but also load balancing among base stations (BS) and relay stations (RSs) during resource allocation procedure. The suboptimal scheme takes the traffic load of access nodes (BS and RSs) into consideration to balance the system traffic load, which would prevent them from overloading and throughput degradation. Simulation results show that the suboptimal scheme performs similarly to the optimal solution and can enhance the system fairness and load balancing performance significantly compared with the traditional schemes.
基金supported by the National Key Technology R&D Program of China(2012ZX03001031-004)the Fundamental Research Funds for the Central Universities (BUPT 2013RC0111)
文摘In orthogonal frequency division multiple access(OFDMA) based femtocell networks,the co-tier interference among femto base stations(FBS) becomes important in multiuser and densely deployed environment.In order to mitigate the co-tier interference and enhance the system total throughput,this paper proposed a best effort spectrum allocation scheme based on the extension of graph theory.In the scheme,a controller was proposed to collect the channel state information(CSI)of all femtocell user equipments(FUEs) in a certain range.Then,the controller evaluated the signal-to-interference Ratio(SIR) of each FUE and determined the set of its interference neighbors.By calculating the received power matrix(RPM) among FUEs and building interference graph matrix(IGM),different spectrum resource blocks(RBs) were assigned to the users with interference relation,while users without interference relation shared the same RBs,which could increase the spectrum efficiency.Simulation results show that the proposed algorithm can significantly improve the RB usage efficiency compared with the basic graph coloring theory,and more than 80% improvement can be acquired in dense deployment scenario.Besides,the throughput of both cell edge macro user equipments(MUEs) and cell edge FUEs is guaranteed on the premise of low interference.
基金funded by the key project of the National Natural Science Foundation of China (No.61431001)the National High-Tech R&D Program (863 Program 2015AA01A705)New Technology Star Plan of Beijing (No.xx2013052)
文摘In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significantly improve the utilization efficiency of computing resources. In this paper,we study the computing resource allocation strategy for one VBS by considering the non-negligible effect of delay introduced by switches. Specifically,we formulate the VBS's sum computing rate maximization as a set optimization problem. To address this problem,we firstly propose a computing resource schedule algorithm,namely,weight before one-step-greedy(WBOSG),which has linear computation complexity and considerable performance. Then,OSG retreat(OSG-R) algorithm is developed to further improve the system performance at the expense of computational complexity. Simulation results under practical setting are provided to validate the proposed two algorithms.
基金Supported by the National Mobile Communications Research Laboratory, Southeast University (No. 2011D17)the Nanjing University of Posts and Telecommunications Program (No. NY208049)
文摘The problem of distributed proportional fair inter-cell frequency allocation for flat-structured cellular systems is studied in this paper. We firstly propose a framework of the frequency allocation in which the whole frequency allocation process is decomposed into many consecutive stages, then identify that for each stage the key is to find the Maximum Weight Independent Set (MWIS) in a given weighted conflict graph in the distributed manner. A new distributed algorithm for MWIS is described in which each node iteratively exchanges messages with neighbors. With this distributed MWIS algorithm, a new distributed proportional fair frequency allocation scheme is presented. The performance of the proposed algorithm is tested in computer experiments simulating the Long Term Evolution (LTE) cellular systems. Simulation results show the performance of the proposed distributed proportional fair frequency allocation scheme is comparable with the centralized ones.