The problem of perfectly secure communication has enjoyed considerable theoretical treatment over the last decades. Results in this area include the identification of multipath transmission as a necessary ingredient, ...The problem of perfectly secure communication has enjoyed considerable theoretical treatment over the last decades. Results in this area include the identification of multipath transmission as a necessary ingredient, as well as quantum key distribution (QKD), which can perfectly protect direct lines, Combining the advantages of the quantum and multipath transmission paradigm, as well as rigorously analyzing the security of such combined techniques, is possible by virtue of game-theory. Based on a game-theoretic measure of channel vulnerability, the authors prove the problem of setting up infrastructures for QKD-based multipath transmission to be NP-complete. The authors consider the problem in two flavors, both being computationally hard. Remarkably, the authors' results indicate that the P-vs-NP-question is only of minor effect for confidentiality, because either nowadays public-key cryptosystems remain secure (in case that P, NP) or infrastructures facilitating perfectly confidential communication can be constructed efficiently (in case that P = NP).展开更多
文摘The problem of perfectly secure communication has enjoyed considerable theoretical treatment over the last decades. Results in this area include the identification of multipath transmission as a necessary ingredient, as well as quantum key distribution (QKD), which can perfectly protect direct lines, Combining the advantages of the quantum and multipath transmission paradigm, as well as rigorously analyzing the security of such combined techniques, is possible by virtue of game-theory. Based on a game-theoretic measure of channel vulnerability, the authors prove the problem of setting up infrastructures for QKD-based multipath transmission to be NP-complete. The authors consider the problem in two flavors, both being computationally hard. Remarkably, the authors' results indicate that the P-vs-NP-question is only of minor effect for confidentiality, because either nowadays public-key cryptosystems remain secure (in case that P, NP) or infrastructures facilitating perfectly confidential communication can be constructed efficiently (in case that P = NP).