High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.