In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a ...In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a channel can be used by a cognitive user or not and the probability that the channel is continually used for a period. Three aspects including space, time domain and frequency domain are united for the research on the distribution of frequency spectrum. The simulation result shows that, in the space domain, time domain, frequency domain algorithm, the transmitted data volume and the total throughput of the system are superior to those in greedy algorithm and time domain—frequency domain algorithm, the novel algorithm is helpful to reduce the disturbance caused by a cognitive user to an authorizing user and lower the competition between cognitive users, this simulation result shows that the proposed algorithm is effective.展开更多
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque...To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.展开更多
This paper presents an approach to calculate dispersion penalty for VSR-1 optical links.Based on parameters of a specific VSR-1 link,dispersion penalties are computed for various modal dispersion bandwidths respective...This paper presents an approach to calculate dispersion penalty for VSR-1 optical links.Based on parameters of a specific VSR-1 link,dispersion penalties are computed for various modal dispersion bandwidths respectively.The worst-case eye closure is expressed numerically by using the signal waveform at time 0,and the signal waveform is obtained in frequency domain through FFT algorithm.By this approach,the dispersion penalty is determined by the shape of transfer functions of the various components in the links.To simplify the derivation of multimode fiber link transfer function,a Gaussian form of normalized impulse response is used.This calculation approach can be used to estimate the worst-case dispersion penalty of VSR-1 links in the link budget analysis.展开更多
In this paper, we overview the principle of Orthogonal Frequency Division Multiplexing Passive Optical Network (OFDM-PON) systems, with a particular focus on upstream architectures capable of achieving 10Gbit/s colo...In this paper, we overview the principle of Orthogonal Frequency Division Multiplexing Passive Optical Network (OFDM-PON) systems, with a particular focus on upstream architectures capable of achieving 10Gbit/s colorless upstream transmission using Reflective Semiconductor Optical Amplifier (RSOA). We propose an architecture of RSOA based OFDM-PON which can achieve 10Gbit/s upstream transmission over a single wavelength. A novel Dynamic Subcarrier Assignment (DSA) algorithm is also proposed to support my architecture, namely Service based Polling in Pipeline (SPP) dynamic subcarrier algorithm. A simulation was conducted to study the performance of SPP algorithm. Compared with the traditional dynamic bandwidth allocation algorithms, service based polling meets the quality of in pipeline algorithm service requirements excellently, and adapts orthogonal frequency division multiplexing passive optical network better with higher bandwidth efficiency and lower algorithm complexity.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency s...In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.展开更多
This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this...This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this paper extends the whole frequency offset acquisition range by embedding a synthetic algorithm according to the preamble structure of WLANs symbols. The numerical results presented support the effectiveness of this algorithm by which the estimation error of the whole carrier frequency offset in the WLANs is effectively decreased.展开更多
In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum whic...In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.展开更多
Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seri...Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.展开更多
This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay informa...This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.展开更多
A spatial compatible user grouping algorithm is proposed to reduce CoChannel Interference (CCI) in Space Division Multiple Access (SDMA) multiuser Multiple Input Multiple Output (MIMO) systems. We evaluate the interfe...A spatial compatible user grouping algorithm is proposed to reduce CoChannel Interference (CCI) in Space Division Multiple Access (SDMA) multiuser Multiple Input Multiple Output (MIMO) systems. We evaluate the interferences among users by use of distances between row spaces spanned by users’ channel matrixes, then control frequency sharing according to the compatible user grouping algorithm. Results show that the row space distance algorithm outperforms others because it can fully utilize the information from users’ channel matrixes, especially the matrix structure information. The results also prove that the algorithm based on channel matrix structure analysis is a better candidate for spatial compatibility approximation.展开更多
This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feed...This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feedback loop and to solve the problem of phase ambiguity,the tracking performance of the algorithm has been improved greatly. Only a few preambles are needed in the al-gorithm since the preambles are not used to estimate the frequency offset but used to provide the variation information of the phase due to the presence of frequency offset. Simulations verify that the algorithm has low SNR bound for tracking as well as high tracking accuracy and the tracking range is expanded to 30% of one subcarrier spacing.展开更多
A parallel algorithm for statistical-fairness-based spectrum allocation of cognitive radios is proposedin this paper. The key idea of the algorithm is to pursue the maximum total spectrum utilization of thesystem by a...A parallel algorithm for statistical-fairness-based spectrum allocation of cognitive radios is proposedin this paper. The key idea of the algorithm is to pursue the maximum total spectrum utilization of thesystem by adopting a parallel technique in every spectrum allocation, and to ensure the statistical fairnessrule by deploying a particular scheme during a series of allocations. The simulation results show that theproposed algorithm not only achieves a fairer and more efficient allocation of spectrum resources, but alsohas much shorter allocation duration than the color sensitive graph coloring (CSGC) algorithm.展开更多
Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced a...Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.展开更多
基金supported by Natural Science Foundation of Heilongjiang Province of China(No.F2015017)
文摘In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a channel can be used by a cognitive user or not and the probability that the channel is continually used for a period. Three aspects including space, time domain and frequency domain are united for the research on the distribution of frequency spectrum. The simulation result shows that, in the space domain, time domain, frequency domain algorithm, the transmitted data volume and the total throughput of the system are superior to those in greedy algorithm and time domain—frequency domain algorithm, the novel algorithm is helpful to reduce the disturbance caused by a cognitive user to an authorizing user and lower the competition between cognitive users, this simulation result shows that the proposed algorithm is effective.
基金supported by the National Natural Science Foundation of China(No.NSFC 41204101)Open Projects Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No.PLN201733)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2015051)Open Projects Fund of the Natural Gas and Geology Key Laboratory of Sichuan Province(No.2015trqdz03)
文摘To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability.
基金Supported by"863"Hi-Tech Research and Development Program(2005AA311030) and the National Natural Science Foundationof China(Grant No.60502005)
文摘This paper presents an approach to calculate dispersion penalty for VSR-1 optical links.Based on parameters of a specific VSR-1 link,dispersion penalties are computed for various modal dispersion bandwidths respectively.The worst-case eye closure is expressed numerically by using the signal waveform at time 0,and the signal waveform is obtained in frequency domain through FFT algorithm.By this approach,the dispersion penalty is determined by the shape of transfer functions of the various components in the links.To simplify the derivation of multimode fiber link transfer function,a Gaussian form of normalized impulse response is used.This calculation approach can be used to estimate the worst-case dispersion penalty of VSR-1 links in the link budget analysis.
基金supported by NSFC Project No.61372119863 Program No.2011AA01A104Doctoral Scientific Fund Project of the Ministry of Education of China(No.20120005110010)
文摘In this paper, we overview the principle of Orthogonal Frequency Division Multiplexing Passive Optical Network (OFDM-PON) systems, with a particular focus on upstream architectures capable of achieving 10Gbit/s colorless upstream transmission using Reflective Semiconductor Optical Amplifier (RSOA). We propose an architecture of RSOA based OFDM-PON which can achieve 10Gbit/s upstream transmission over a single wavelength. A novel Dynamic Subcarrier Assignment (DSA) algorithm is also proposed to support my architecture, namely Service based Polling in Pipeline (SPP) dynamic subcarrier algorithm. A simulation was conducted to study the performance of SPP algorithm. Compared with the traditional dynamic bandwidth allocation algorithms, service based polling meets the quality of in pipeline algorithm service requirements excellently, and adapts orthogonal frequency division multiplexing passive optical network better with higher bandwidth efficiency and lower algorithm complexity.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
文摘In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.
基金Project supported by the National Natural Science Foundation of China (No. 2004012F33AA), and Education Foundation of Zhe- jiang Education Department (No. 20040125-66), China
文摘This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this paper extends the whole frequency offset acquisition range by embedding a synthetic algorithm according to the preamble structure of WLANs symbols. The numerical results presented support the effectiveness of this algorithm by which the estimation error of the whole carrier frequency offset in the WLANs is effectively decreased.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2015D07)
文摘In the hybrid LTE cellular network with D2D(Device-to-Device) communication, D2D communication technologies can improve the spectral efficiency significantly. However, the D2D users have to reutilize the spectrum which is allocated to the cellular users. Therefore, the co-channel interference will be more complicated in the case of crosscell D2D communications. In this article, a novel spectrum allocation algorithm for inter-cell D2D communication considering the traffic load is proposed. The traffic load can be balanced by the proposed algorithm. Meanwhile D2D users can multiplex the spectrum allocated to a number of cellular users with a certain percentage to meet the requirements of Qo S of D2D communications and reduce the interference to cellular users. Finally, the simulation results demonstrate that the proposed algorithm can meet the needs of D2D users, balance the traffic load and improve the overall throughput of the system.
基金supported by the National Natural Science Foundation of China under Grant No.61372092the China National Science and Technology Major Projects on New Generation Broadband Wireless Mobile Communications Network under Grants No.2011ZX03005-004,No.2012ZX03001029-003,No.2012ZX03001008-003
文摘Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholar ( No. 61001115 ) and the Beijing Municipal Natural Science Foundation ( No. 4102044).
文摘This paper investigates the relay selection and resource allocation problem in multiuser orthogonal frequency division multiplexing (OFDM) based cooperative cellular networks, in which user nodes could relay information for each other using the decode-and-forward (DF) protocol to achieve spatial diversity gain. Specifically, the paper proposes an optimal joint relay selection and resource allocation (0RSRA) algorithm whose objective is to maximize system total achievable data rate with the constraints of each user' s individual quality of service (QoS) requirement and transmission power. Due to being a mixed binary integer programming (MBIP) problem, a novel two-level Lagrangian dual-primal decomposition and subgradient projection approach is proposed to not only select the appropriate cooperative relay nodes, but also allocate subcarries and power optimally. Simulation re- suits demonstrate that our proposed scheme can efficiently enhance overall system data rate and guarantee each user' s QoS requirement. Meanwhile, the fairness among users can be improved dramatically.
文摘A spatial compatible user grouping algorithm is proposed to reduce CoChannel Interference (CCI) in Space Division Multiple Access (SDMA) multiuser Multiple Input Multiple Output (MIMO) systems. We evaluate the interferences among users by use of distances between row spaces spanned by users’ channel matrixes, then control frequency sharing according to the compatible user grouping algorithm. Results show that the row space distance algorithm outperforms others because it can fully utilize the information from users’ channel matrixes, especially the matrix structure information. The results also prove that the algorithm based on channel matrix structure analysis is a better candidate for spatial compatibility approximation.
基金the Natural Science Foundation of Jiangsu Province (BK2006701)the National Natural Science Foundation of China (No.60672079).
文摘This paper presents a semi-blind tracking algorithm used for Multiple Phase Shift Keying based Orthogonal Frequency Division Multiplexing(MPSK-OFDM) system. By using special pream-bles to assist the decision of a feedback loop and to solve the problem of phase ambiguity,the tracking performance of the algorithm has been improved greatly. Only a few preambles are needed in the al-gorithm since the preambles are not used to estimate the frequency offset but used to provide the variation information of the phase due to the presence of frequency offset. Simulations verify that the algorithm has low SNR bound for tracking as well as high tracking accuracy and the tracking range is expanded to 30% of one subcarrier spacing.
基金Supported by the National Basic Research Program of China ( No. 2007CB310603)the National High Technology Research and Development Program of China (No. 2006AA10Z258)+1 种基金the Research Fund of NCRL of Southeast University (No. 2008A05&B05a)the UWCL of Ministry of Education of BUPT (No.030801).
文摘A parallel algorithm for statistical-fairness-based spectrum allocation of cognitive radios is proposedin this paper. The key idea of the algorithm is to pursue the maximum total spectrum utilization of thesystem by adopting a parallel technique in every spectrum allocation, and to ensure the statistical fairnessrule by deploying a particular scheme during a series of allocations. The simulation results show that theproposed algorithm not only achieves a fairer and more efficient allocation of spectrum resources, but alsohas much shorter allocation duration than the color sensitive graph coloring (CSGC) algorithm.
基金supported in part by National Natural Science Foundation(61231008)Natural Science Foundation of Shannxi Province(2015JQ6248)+1 种基金National S&T Major Project(2012ZX03003005-005)the 111 Project (B08038)
文摘Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.