Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision freque...Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision frequency attenuation analysis technology. First, we introduce the method of three-parameter wavelet transform and the time-frequency focused criterion and develop a high-precision time-frequency analysis method based on an adaptive three-parameter wavelet transform, which has high time-frequency resolution with benefit to LFSA and can obtain a single-peaked spectrum with narrow side-lobes with benefit to EAA. Second, we correctly compute absorption coefficient by curve fitting based on the nonlinear Nelder-Mead algorithm and effectively improve EAA precision. Practical application results show that the proposed frequency attenuation analysis technology integrated with LFSA and EAA can effectively predict favorable zones of carbonate oolitic reservoir. Furthermore, reservoir prediction results based on LFSA correspond with EAA. The new technology can effectively improve reservoir prediction reliability and reduce exploration risk.展开更多
The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods s...The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.展开更多
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w...Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.展开更多
When a seismic wave propagates through subsurface viscoelastic media,the formation absorbs the high-frequency energy of the seismic wave more strongly than the low-frequency energy.As the depth and the off set increas...When a seismic wave propagates through subsurface viscoelastic media,the formation absorbs the high-frequency energy of the seismic wave more strongly than the low-frequency energy.As the depth and the off set increase,the diff erence between the logarithmic spectral areas with high and low frequencies gradually increases.Based on this seismic wave characteristic,we have developed a novel Q-estimation method based on logarithmic spectral area diff erence of high and low frequencies(referred to as the LSAD_LH method).In this paper,we derive the theoretical relationship between the Q value and difference of logarithmic spectral areas with high and low frequencies and prove the applicability of the LSAD_LH method using a single-layer medium numerical model.To verify the sensitivity of the LSAD_LH method to bandwidth selection and noise,we compare the LSAD_LH method with two credible methods—the logarithmic spectral ratio(LSR)and logarithmic spectral area diff erence(LSAD)methods using a synthetic model containing the random noise.The results demonstrate that the LSAD_LH method is not highly dependent on bandwidth,and in terms of noise immunity,it is signifi cantly better than the LSR method and has the same advantages as the LSAD method.To further highlight the advantages of the LSAD_LH method,we apply the LSAD_LH and LSAD methods to the vertical seismic profi ling(VSP)numerical simulation of the multilayer media and the fi eld zero-off set VSP data.The application of the two cases proves the applicability of the LSAD_LH method and the accuracy of the high Q-value estimation relative to the LSAD method.Moreover,via the transmission coeffi cient,the LSAD_LH method overcomes the weakness of the LSAD method.展开更多
基金国家重大科技专项(2017ZX05069)“长庆油田5000万吨持续高效稳产关键技术研究与应用”课题三(2016E-0503)共同资助the National Science and Technology Major Project of China(Grant No.2017ZX05069)Third Topic of“Research and Application of Key Technologies for Sustainable,High Efficiency and Stable Production of 50Million Tons in Changqing Oil Field”(Grant No.2016E-0503)
基金sponsored by the National Natural Science Foundation of China (Grant No.40904035)
文摘Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision frequency attenuation analysis technology. First, we introduce the method of three-parameter wavelet transform and the time-frequency focused criterion and develop a high-precision time-frequency analysis method based on an adaptive three-parameter wavelet transform, which has high time-frequency resolution with benefit to LFSA and can obtain a single-peaked spectrum with narrow side-lobes with benefit to EAA. Second, we correctly compute absorption coefficient by curve fitting based on the nonlinear Nelder-Mead algorithm and effectively improve EAA precision. Practical application results show that the proposed frequency attenuation analysis technology integrated with LFSA and EAA can effectively predict favorable zones of carbonate oolitic reservoir. Furthermore, reservoir prediction results based on LFSA correspond with EAA. The new technology can effectively improve reservoir prediction reliability and reduce exploration risk.
文摘The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.
基金supported by the National Science and Technology Major Project(No.2011ZX05007-006)the 973 Program of China(No.2013CB228604)the major Project of Petrochina(No.2014B-0610)
文摘Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.
基金National Nature Science Foundation of China(Grant No.U1562110)。
文摘When a seismic wave propagates through subsurface viscoelastic media,the formation absorbs the high-frequency energy of the seismic wave more strongly than the low-frequency energy.As the depth and the off set increase,the diff erence between the logarithmic spectral areas with high and low frequencies gradually increases.Based on this seismic wave characteristic,we have developed a novel Q-estimation method based on logarithmic spectral area diff erence of high and low frequencies(referred to as the LSAD_LH method).In this paper,we derive the theoretical relationship between the Q value and difference of logarithmic spectral areas with high and low frequencies and prove the applicability of the LSAD_LH method using a single-layer medium numerical model.To verify the sensitivity of the LSAD_LH method to bandwidth selection and noise,we compare the LSAD_LH method with two credible methods—the logarithmic spectral ratio(LSR)and logarithmic spectral area diff erence(LSAD)methods using a synthetic model containing the random noise.The results demonstrate that the LSAD_LH method is not highly dependent on bandwidth,and in terms of noise immunity,it is signifi cantly better than the LSR method and has the same advantages as the LSAD method.To further highlight the advantages of the LSAD_LH method,we apply the LSAD_LH and LSAD methods to the vertical seismic profi ling(VSP)numerical simulation of the multilayer media and the fi eld zero-off set VSP data.The application of the two cases proves the applicability of the LSAD_LH method and the accuracy of the high Q-value estimation relative to the LSAD method.Moreover,via the transmission coeffi cient,the LSAD_LH method overcomes the weakness of the LSAD method.