传统相控式交交变频器由于采用电网换相方式,电源侧功率因数较低,在实际应用中需要加装各种无功补偿装置。应用IGBT全控型器件和PWM技术并利用Matlab的Simulink环境搭建了一种新型的交交变频器——PWM交交变频器,该变频器使工频电源侧...传统相控式交交变频器由于采用电网换相方式,电源侧功率因数较低,在实际应用中需要加装各种无功补偿装置。应用IGBT全控型器件和PWM技术并利用Matlab的Simulink环境搭建了一种新型的交交变频器——PWM交交变频器,该变频器使工频电源侧电压与电流的位移因数提高到接近1,因而大大提高了电源侧的功率因数。同时把该变频器应用于柔性分频输电系统中,并模拟了一回200 km/110 k V输电线路。仿真表明其输送容量大于90 MW,相对于工频交流输电系统容量大大提高;变频器的位移因数提高到1,网侧的功率因数得到了大大改善,达到了0.9以上。因此PWM交交变频器大大改善了系统性能,尤其是工频侧的功率因数。展开更多
文摘传统相控式交交变频器由于采用电网换相方式,电源侧功率因数较低,在实际应用中需要加装各种无功补偿装置。应用IGBT全控型器件和PWM技术并利用Matlab的Simulink环境搭建了一种新型的交交变频器——PWM交交变频器,该变频器使工频电源侧电压与电流的位移因数提高到接近1,因而大大提高了电源侧的功率因数。同时把该变频器应用于柔性分频输电系统中,并模拟了一回200 km/110 k V输电线路。仿真表明其输送容量大于90 MW,相对于工频交流输电系统容量大大提高;变频器的位移因数提高到1,网侧的功率因数得到了大大改善,达到了0.9以上。因此PWM交交变频器大大改善了系统性能,尤其是工频侧的功率因数。