The cutting burr is one of the common phenomena occurring in metal cutting.In this paper,the forming processes,main effect factors and change law of the cutting direction burr in orthogonal cutting have been studied a...The cutting burr is one of the common phenomena occurring in metal cutting.In this paper,the forming processes,main effect factors and change law of the cutting direction burr in orthogonal cutting have been studied and related theories are analyzed based on the cutting experiments.The result shows that:(1)the forming processes of cutting direction burr consist of normal cutting,flexure deformation of end surface of workpiece,plastic effect,continuous cutting and shear break separating in orthogonal cutting;(2)a new phenomenon is found that cutting direction burr is formed with the shear break separation of the chip and workpiece machined surfaces;(3)the size of cutting direction burr varies with workpiece materials,cutting parameters and geometric parameters of the cutting tool.展开更多
Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and t...Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106 ?m were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37% and 17.72% after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.展开更多
基金Supported by National Natural Science Foundation of China (No.59775071).
文摘The cutting burr is one of the common phenomena occurring in metal cutting.In this paper,the forming processes,main effect factors and change law of the cutting direction burr in orthogonal cutting have been studied and related theories are analyzed based on the cutting experiments.The result shows that:(1)the forming processes of cutting direction burr consist of normal cutting,flexure deformation of end surface of workpiece,plastic effect,continuous cutting and shear break separating in orthogonal cutting;(2)a new phenomenon is found that cutting direction burr is formed with the shear break separation of the chip and workpiece machined surfaces;(3)the size of cutting direction burr varies with workpiece materials,cutting parameters and geometric parameters of the cutting tool.
文摘Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106 ?m were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37% and 17.72% after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives.