To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liqu...To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.展开更多
In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force...In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force is modelled and analyzed into mathematical Wolfram simulations in order to compare the results and in the same time achieve the best solutions. Theoretical results are carried out by using the regression method that required fulfilling the critter by Fisher. The number of experiment, measurements and results of cutting force are presented in 2D as well as 3D. In order to verify the accuracy of the 2D diagram, the results for our case is used both two way such as experimental and theoretical method as well as results are compared. In other hands, these results indicate directly that the optimized parameters are capable of machining the workpiece. The obtained measurement results are compared with theoretical methods in Wolfram software.展开更多
The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calo...The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calorimetry(DSC) and semi-quantitative shape memory effect test, the microstructure and shape memory effect were analyzed. It is found that lots of βphase and few α phase are formed in the quenching of Cu-7.5Al-9.7Mn-3.4Zn-0.3Ti-0.14B(mass fraction, %) alloy, a great deal of martensite and few α phase are formed in the aging alloy, while the annealing alloy is composed of a great deal of α phase and few βphase. The tensile strength and elongation of the annealed alloy are 649 MPa and 17.1%, respectively. Some tiny and dispersion distributed second phase particles are generated in Ti and B precipitates, greatly improving the alloy machinability.展开更多
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of ChinaProject(2019GHY112068)supported by the Key Research and Development of Shandong,China
文摘To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.
文摘In this work, the cutting forces by end milling operation are analyzed. Therefore, the main parameters of cutting force as cutting speed, feed rate and depth of cut also are investigated in our case. The cutting force is modelled and analyzed into mathematical Wolfram simulations in order to compare the results and in the same time achieve the best solutions. Theoretical results are carried out by using the regression method that required fulfilling the critter by Fisher. The number of experiment, measurements and results of cutting force are presented in 2D as well as 3D. In order to verify the accuracy of the 2D diagram, the results for our case is used both two way such as experimental and theoretical method as well as results are compared. In other hands, these results indicate directly that the optimized parameters are capable of machining the workpiece. The obtained measurement results are compared with theoretical methods in Wolfram software.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(CX2012B037)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(2013zzts017)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,ChinaProject(2012bjjxj015)supported by the Excellent Doctor Degree Thesis Support Foundation of Central South University,China
文摘The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calorimetry(DSC) and semi-quantitative shape memory effect test, the microstructure and shape memory effect were analyzed. It is found that lots of βphase and few α phase are formed in the quenching of Cu-7.5Al-9.7Mn-3.4Zn-0.3Ti-0.14B(mass fraction, %) alloy, a great deal of martensite and few α phase are formed in the aging alloy, while the annealing alloy is composed of a great deal of α phase and few βphase. The tensile strength and elongation of the annealed alloy are 649 MPa and 17.1%, respectively. Some tiny and dispersion distributed second phase particles are generated in Ti and B precipitates, greatly improving the alloy machinability.