为探究车削时切削用量对切削力和切削振动的影响,设定半精加工的切削用量范围,采用正交试验设计方法制定试验流程,在数控机床上使用硬质合金外圆车刀对45#圆钢进行切削试验,切削过程不加冷却液,并分别使用Kistler切削力测量系统和Vib Pi...为探究车削时切削用量对切削力和切削振动的影响,设定半精加工的切削用量范围,采用正交试验设计方法制定试验流程,在数控机床上使用硬质合金外圆车刀对45#圆钢进行切削试验,切削过程不加冷却液,并分别使用Kistler切削力测量系统和Vib Pilot M+P切削振动测量系统同时采集3个方向的切削力信号和切削振动信号,对试验数据使用方差分析(ANOVA)、贡献率计算和相关分析的方法进行处理。结果表明:背吃刀量对主切削力和进给力的影响最大,进给量对背向力和3个方向切削振动的影响最大,而切削速度对各方向切削力和切削振动的影响都最小;切削力信号的误差要远小于切削振动信号的误差。试验分析结果可以为合理设计切削用量参数,有效选择切削状态监控信号提供参考。展开更多
文摘为探究车削时切削用量对切削力和切削振动的影响,设定半精加工的切削用量范围,采用正交试验设计方法制定试验流程,在数控机床上使用硬质合金外圆车刀对45#圆钢进行切削试验,切削过程不加冷却液,并分别使用Kistler切削力测量系统和Vib Pilot M+P切削振动测量系统同时采集3个方向的切削力信号和切削振动信号,对试验数据使用方差分析(ANOVA)、贡献率计算和相关分析的方法进行处理。结果表明:背吃刀量对主切削力和进给力的影响最大,进给量对背向力和3个方向切削振动的影响最大,而切削速度对各方向切削力和切削振动的影响都最小;切削力信号的误差要远小于切削振动信号的误差。试验分析结果可以为合理设计切削用量参数,有效选择切削状态监控信号提供参考。