An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal ...An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal between the two successive cuts is 270°. The cutting process can be adjusted from the unstable region to stable one whenever regenerative chatter occurs if the phase shift angle is kept 270° by the optimal regulation of spindle speed. The theoretical analysis and the experimental results prove that the optimal regulation of spindle speed can effectively control regenerative cutting chatter. In addition, a reliablelly optimal control system of reliable spindle speed is presented. There is no need for system identification of the machine tool, and it is easy to put this regenerative chatter control method into practice, so the method has excellent application prospect.展开更多
The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on...The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.展开更多
According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simult...According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simultaneously, based on an estab- lished cutting testbed of the coal and rock, cutting tests of different pick arrangements of the drum models were carried out, where the compressive strength of the analogous cutting material was 2.48 MPa and the drum rotary speed 67.5 r/min. The variance, the mean values, maxima and mean maxima of the torque load were analyzed for different type drum models. Moreover, the relation-ships between the type of pick arrangements and the cutting lump coal percentage were studied. The results indicate that the load fluctuation of the sequence drum is larger than that of the punnett square drum in the cutting process and the lump coal percentage and economic benefits of the sequence drum are inferior to the punnett square drum. We conclude that the punnett square drum is superior to the sequence drum.展开更多
To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe ...To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe in real time were created. It was found that the optimization of the cutting process must be carried out according to the criteria: productivity, cost and tool life. The hardware structure of the adaptive control system for heavy lathe was developed and its dynamic performance was investigated. The system provides function of the cutting speed of adaptive control and the possibility of compensation of linear, nonlinear and temperature-related inaccuracies. Research results were implemented in the prototype of adaptive control system for heavy lathe and the integral complex of optimal control of an adaptive technological system.展开更多
Cutting chatter is a violent self-excited vibration between a tool and a workpiece.Its negative effects mainly include poor surface quality,inferior dimensional accuracy,disproportionate tool wear or tool breakage,and...Cutting chatter is a violent self-excited vibration between a tool and a workpiece.Its negative effects mainly include poor surface quality,inferior dimensional accuracy,disproportionate tool wear or tool breakage,and excessive noise.Therefore,early recognition and online suppression of chatter vibration are necessary.This paper proposes a novel synthetic criterion(SC)for early chatter recognition.The proposed SC integrates standard deviation(STD)and one-step autocorrelation function(OSAF).Moreover,this paper revised the fast algorithm of OSAF.We can quantitatively divide a chatter vibration signal into three stages,which are stable stage,transition stage and chatter stage according to the SC.Compared with STD,the SC can improve the reliability of chatter recognition and the threshold of SC is not sensitive to variable cutting conditions.This paper presents an original algorithm of SC and its fast algorithm in detail.The fast algorithm of SC in this paper improves the computation efficiency compared with the original algorithm of SC.To validate the effectiveness of the proposed SC,a series of milling experiments were conducted under different cutting conditions.In these experiments,the vibration signals were acquired by two accelerometers mounted on the spindle house.The experimental results showed that the proposed SC could effectively recognize chatter vibration at an early stage of chatter vibration,which saved valuable time for online chatter suppression.展开更多
文摘An applicable method to control regenerative cutting chatter automatically based on the optimal regulation of spindle speed is introduced. The optimal value of the phase shift angle of the regenerative chatter signal between the two successive cuts is 270°. The cutting process can be adjusted from the unstable region to stable one whenever regenerative chatter occurs if the phase shift angle is kept 270° by the optimal regulation of spindle speed. The theoretical analysis and the experimental results prove that the optimal regulation of spindle speed can effectively control regenerative cutting chatter. In addition, a reliablelly optimal control system of reliable spindle speed is presented. There is no need for system identification of the machine tool, and it is easy to put this regenerative chatter control method into practice, so the method has excellent application prospect.
基金Project(51775561)supported by the National Natural Science Foundation of ChinaProject(20130162110004)supported by the National Doctoral Foundation of China
文摘The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.
文摘According to similarity theory, we carried out a dimensional analysis of the shearer drum correlation parameters and built similarity criteria. Based on these, similarity models of shearer drums were developed. Simultaneously, based on an estab- lished cutting testbed of the coal and rock, cutting tests of different pick arrangements of the drum models were carried out, where the compressive strength of the analogous cutting material was 2.48 MPa and the drum rotary speed 67.5 r/min. The variance, the mean values, maxima and mean maxima of the torque load were analyzed for different type drum models. Moreover, the relation-ships between the type of pick arrangements and the cutting lump coal percentage were studied. The results indicate that the load fluctuation of the sequence drum is larger than that of the punnett square drum in the cutting process and the lump coal percentage and economic benefits of the sequence drum are inferior to the punnett square drum. We conclude that the punnett square drum is superior to the sequence drum.
文摘To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe in real time were created. It was found that the optimization of the cutting process must be carried out according to the criteria: productivity, cost and tool life. The hardware structure of the adaptive control system for heavy lathe was developed and its dynamic performance was investigated. The system provides function of the cutting speed of adaptive control and the possibility of compensation of linear, nonlinear and temperature-related inaccuracies. Research results were implemented in the prototype of adaptive control system for heavy lathe and the integral complex of optimal control of an adaptive technological system.
基金supported by the National Basic Research Program of China (Grant No. 2011CB706803)the National Natural Science Foundation of China (Grant Nos. 51175208, 51075161)Science Fund of Hebei University of Science and Technology (Grant No. XL201121)
文摘Cutting chatter is a violent self-excited vibration between a tool and a workpiece.Its negative effects mainly include poor surface quality,inferior dimensional accuracy,disproportionate tool wear or tool breakage,and excessive noise.Therefore,early recognition and online suppression of chatter vibration are necessary.This paper proposes a novel synthetic criterion(SC)for early chatter recognition.The proposed SC integrates standard deviation(STD)and one-step autocorrelation function(OSAF).Moreover,this paper revised the fast algorithm of OSAF.We can quantitatively divide a chatter vibration signal into three stages,which are stable stage,transition stage and chatter stage according to the SC.Compared with STD,the SC can improve the reliability of chatter recognition and the threshold of SC is not sensitive to variable cutting conditions.This paper presents an original algorithm of SC and its fast algorithm in detail.The fast algorithm of SC in this paper improves the computation efficiency compared with the original algorithm of SC.To validate the effectiveness of the proposed SC,a series of milling experiments were conducted under different cutting conditions.In these experiments,the vibration signals were acquired by two accelerometers mounted on the spindle house.The experimental results showed that the proposed SC could effectively recognize chatter vibration at an early stage of chatter vibration,which saved valuable time for online chatter suppression.