The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Throug...Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.展开更多
The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanica...The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.展开更多
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ...Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.展开更多
The novel Ni-based brazing filler was used to join C/C composites.When brazing temperature increased from 1080 to 1100°C,the wetting angle decreased from 23°to 14°,and the brazing filler had good wettab...The novel Ni-based brazing filler was used to join C/C composites.When brazing temperature increased from 1080 to 1100°C,the wetting angle decreased from 23°to 14°,and the brazing filler had good wettability on the surface of C/C composites.The brazing seam of the brazed joint consisted of Ni(s,s)and Cr_(3)C_(2) phases.As brazing temperature increased,lots of Cr_(3)C_(2) phases were generated at the bonding interface,and the thick reaction layer was formed.When brazing temperature was 1120°C,the shear strength of C/C joint reached the maximum value of 31.5 MPa.The fracture path extended in the C/C matrix close to the bonding interface.展开更多
The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ...The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ECAP process up to4passes at room temperature and high temperature(300°C).The results of microstructure characterization by SEM and shear strength test revealed that the joints between the layers of4-pass ECAPed samples were considerably stronger than those of1-pass ECAPed samples due to tolerating higher values of plastic deformations during ECAP.Furthermore,shear strength data showed that increasing ECAP temperature caused a notable increase in shear strength of the specimens.The reason lies in the formation of diffusional joint between the interface of both Al/Cu and Cu/Ni layers at high temperature.The shear bonding strength of ECAPed Cu/Ni/Cu composite at high temperature was remarkably higher than that of ECAPed Cu/Al/Cu composite.展开更多
Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough a...Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough and clean surface which leads to establishing a joint with higher strength. The optimized parameters were bonding temperature of 580 ℃ and bonding time of 30 and 60 min. Microstructural observation together with XRD patterns confirmed the existence of Al2 Cu, Al2 Cu Mg, Cu3 Ti, Ti Al3, Ti Al and Mg2 Sn intermetallic compounds formed in Al weld side. On the other hand, Ti3 Al, Sn3 Ti5 and Ti3 Sn intermetallic compounds formed in Ti side. With increasing bonding time from 30 to 60 min, although the interlayer was not completely consumed, the thickness of remained Babbitt interlayer decreased to approximately 15 μ m. The study showed that shear strength of the joint reaches the high value of 57 MPa obtained at larger bonding time of 60 min.展开更多
Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance c...Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance characteristics in turning of Al-SiC-Gr hybrid composites using grey-fuzzy algorithm. The hybrid composites with 5%, 7.5% and 10% combined equal mass fraction of SiC-Gr particles were used for the study and their corresponding tensile strength values are 170, 210, 204 MPa respectively. Al-10%(SiC-Gr) hybrid composite provides better machinability when compared with composites with 5% and 7.5% of SiC-Gr. Grey-fuzzy logic approach offers improved grey-fuzzy reasoning grade and has less uncertainties in the output when compared with grey relational technique. The confirmatory test reveals an increase in grey-fuzzy reasoning grade from 0.619 to 0.891, which substantiates the improvement in multi-performance characteristics at the optimal level of process parameters setting.展开更多
To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0...To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.展开更多
Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and...Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and severe surface damages are the main problems in dry cutting Cf/SiC composites process.The feasibility study on cryogenic milling of Cf/SiC composites using liquid nitrogen as coolant is investigated.Influences of milling parameters and coolant on temperature,cutting force,surface quality and tool wear are investigated,which is compared with dry cutting.Experimental results reveal that the cutting temperature in cryogenic milling of Cf/SiC composites is reduced by about 40%—60%compared with dry cutting.The milling force increases gradually with the increase of spindle speed,feed rate,depth and width of milling in cryogenic milling process.In addition,the machined surface quality in cryogenic milling is superior to that in dry cutting process.Fiber fracture,matrix damage and fiber matrix debonding are main material removal mechanisms.Flank face wear is the main wear form of the polycrystalline diamond(PCD)end mills.The tool life is prolonged in the cryogenic milling process because the reduced temperature inhibits the softening of Co binder and phase transition of diamond in the PCD end mills.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and m...The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.展开更多
The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and t...The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.展开更多
To design an effective and realistically applicable sinter bonding process for power devices,we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainabil...To design an effective and realistically applicable sinter bonding process for power devices,we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainability and superior thermal conductance.This process involved rapid pressure-assisted sinter bonding in air followed by pressureless annealing in a nitrogen atmosphere.In the case of a paste prepared with a mixture of 20 wt.%malic acid and 80 wt.%ethylene glycol,sinter bonding at 300℃and 5 MPa for only 30 s resulted in a sufficient shear strength of 23.1 MPa.The shear strength was significantly enhanced to 69.6 MPa by the additional pressureless aging for 30 min.Therefore,the two-step sinter bonding process is expected to provide an outstanding production rate as a next-generation sinter bonding process.展开更多
The potential of friction stir forming for joining dissimilar grades of aluminum alloys namely,AA 5052-H32 and AA 6061-T6,was investigated.Study on the effect of tool plunge depth revealed that,lap shear load of 7.16 ...The potential of friction stir forming for joining dissimilar grades of aluminum alloys namely,AA 5052-H32 and AA 6061-T6,was investigated.Study on the effect of tool plunge depth revealed that,lap shear load of 7.16 kN and cross-tensile load of 3.51 kN,recorded at medium tool plunge depth range from 0.5 to 0.7 mm,measured using a universal testing machine,were much larger than those of friction stir welded and friction stir spot welded joints fabricated on the same materials.Joint macrostructure observed with optical microscope revealed that joints were strengthened either by mechanical pin interlocking or by metallurgical bonding.The effect of tool plunge depth on the stir zone formation and the influence of frictional heat flux on the lower sheet were revealed through the microhardness measurement using Vickers hardness tester.Morphological studies revealed that tool plunge depth has a significant influence on the pin formation and the geometric features,generated in these joints.Occurrence of various failure modes such as pin pull-out,pin shear,partial bond delamination,and tear-off,were governed by the formation of critical weak zones at various tool plunge depths.展开更多
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.
基金Project(cstc2015yykfC0001)supported by the National Engineering Research Centre for Magnesium Alloys,ChinaProject supported by State Key Laboratory of Mechanical Transmission of Chongqing University,China
文摘The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.
基金Project(51675538)supported by the National Natural Science Foundation of China。
文摘Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.
基金the financial support from the National Natural Science Foundation of China (Nos. 51675030, 51871010, 52005022)Shanghai Aerospace Scienceand Technology Innovation Fund, China (No. SAST2020-117)。
文摘The novel Ni-based brazing filler was used to join C/C composites.When brazing temperature increased from 1080 to 1100°C,the wetting angle decreased from 23°to 14°,and the brazing filler had good wettability on the surface of C/C composites.The brazing seam of the brazed joint consisted of Ni(s,s)and Cr_(3)C_(2) phases.As brazing temperature increased,lots of Cr_(3)C_(2) phases were generated at the bonding interface,and the thick reaction layer was formed.When brazing temperature was 1120°C,the shear strength of C/C joint reached the maximum value of 31.5 MPa.The fracture path extended in the C/C matrix close to the bonding interface.
文摘The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ECAP process up to4passes at room temperature and high temperature(300°C).The results of microstructure characterization by SEM and shear strength test revealed that the joints between the layers of4-pass ECAPed samples were considerably stronger than those of1-pass ECAPed samples due to tolerating higher values of plastic deformations during ECAP.Furthermore,shear strength data showed that increasing ECAP temperature caused a notable increase in shear strength of the specimens.The reason lies in the formation of diffusional joint between the interface of both Al/Cu and Cu/Ni layers at high temperature.The shear bonding strength of ECAPed Cu/Ni/Cu composite at high temperature was remarkably higher than that of ECAPed Cu/Al/Cu composite.
文摘Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough and clean surface which leads to establishing a joint with higher strength. The optimized parameters were bonding temperature of 580 ℃ and bonding time of 30 and 60 min. Microstructural observation together with XRD patterns confirmed the existence of Al2 Cu, Al2 Cu Mg, Cu3 Ti, Ti Al3, Ti Al and Mg2 Sn intermetallic compounds formed in Al weld side. On the other hand, Ti3 Al, Sn3 Ti5 and Ti3 Sn intermetallic compounds formed in Ti side. With increasing bonding time from 30 to 60 min, although the interlayer was not completely consumed, the thickness of remained Babbitt interlayer decreased to approximately 15 μ m. The study showed that shear strength of the joint reaches the high value of 57 MPa obtained at larger bonding time of 60 min.
文摘Metal matrix composites reinforced with graphite particles provide better machinability and tribological properties. The present study attempts to find the optimal level of machining parameters for multi-performance characteristics in turning of Al-SiC-Gr hybrid composites using grey-fuzzy algorithm. The hybrid composites with 5%, 7.5% and 10% combined equal mass fraction of SiC-Gr particles were used for the study and their corresponding tensile strength values are 170, 210, 204 MPa respectively. Al-10%(SiC-Gr) hybrid composite provides better machinability when compared with composites with 5% and 7.5% of SiC-Gr. Grey-fuzzy logic approach offers improved grey-fuzzy reasoning grade and has less uncertainties in the output when compared with grey relational technique. The confirmatory test reveals an increase in grey-fuzzy reasoning grade from 0.619 to 0.891, which substantiates the improvement in multi-performance characteristics at the optimal level of process parameters setting.
基金financial support from the National Natural Science Foundation of China(No.51974198)。
文摘To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.
基金the National Natural Science Foundation of China(Nos.51705249,51875285)the China Postdoctoral Science Foundation(No.2019M661823)+1 种基金the Aeronautical Science Foundation of China(No.2017ZE52047)the Defense Industrial Technology Development Program(No.JCKY2018605C018)。
文摘Carbon fiber reinforced silicon carbide matrix(Cf/SiC)composites have the most potential application for high-temperature components of aerospace high-end equipment.However,high cutting temperature,rapid tool wear and severe surface damages are the main problems in dry cutting Cf/SiC composites process.The feasibility study on cryogenic milling of Cf/SiC composites using liquid nitrogen as coolant is investigated.Influences of milling parameters and coolant on temperature,cutting force,surface quality and tool wear are investigated,which is compared with dry cutting.Experimental results reveal that the cutting temperature in cryogenic milling of Cf/SiC composites is reduced by about 40%—60%compared with dry cutting.The milling force increases gradually with the increase of spindle speed,feed rate,depth and width of milling in cryogenic milling process.In addition,the machined surface quality in cryogenic milling is superior to that in dry cutting process.Fiber fracture,matrix damage and fiber matrix debonding are main material removal mechanisms.Flank face wear is the main wear form of the polycrystalline diamond(PCD)end mills.The tool life is prolonged in the cryogenic milling process because the reduced temperature inhibits the softening of Co binder and phase transition of diamond in the PCD end mills.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
基金Project(51674144)supported by the National Natural Science Foundation of ChinaProject(KJLD14016)supported by the Luodi Research Plan of Jiangxi Educational Department,China+1 种基金Projects(20122BAB206021,20133ACB21003)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(20122BCB23001)supported by the Young Scientists Cultivating Program of Jiangxi Province,China
文摘The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 74 0 34)
文摘The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.
基金the Materials&Components Technology Development Program(10080187)the Ministry of Trade,Industry&Energy(MI,Korea).
文摘To design an effective and realistically applicable sinter bonding process for power devices,we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainability and superior thermal conductance.This process involved rapid pressure-assisted sinter bonding in air followed by pressureless annealing in a nitrogen atmosphere.In the case of a paste prepared with a mixture of 20 wt.%malic acid and 80 wt.%ethylene glycol,sinter bonding at 300℃and 5 MPa for only 30 s resulted in a sufficient shear strength of 23.1 MPa.The shear strength was significantly enhanced to 69.6 MPa by the additional pressureless aging for 30 min.Therefore,the two-step sinter bonding process is expected to provide an outstanding production rate as a next-generation sinter bonding process.
文摘The potential of friction stir forming for joining dissimilar grades of aluminum alloys namely,AA 5052-H32 and AA 6061-T6,was investigated.Study on the effect of tool plunge depth revealed that,lap shear load of 7.16 kN and cross-tensile load of 3.51 kN,recorded at medium tool plunge depth range from 0.5 to 0.7 mm,measured using a universal testing machine,were much larger than those of friction stir welded and friction stir spot welded joints fabricated on the same materials.Joint macrostructure observed with optical microscope revealed that joints were strengthened either by mechanical pin interlocking or by metallurgical bonding.The effect of tool plunge depth on the stir zone formation and the influence of frictional heat flux on the lower sheet were revealed through the microhardness measurement using Vickers hardness tester.Morphological studies revealed that tool plunge depth has a significant influence on the pin formation and the geometric features,generated in these joints.Occurrence of various failure modes such as pin pull-out,pin shear,partial bond delamination,and tear-off,were governed by the formation of critical weak zones at various tool plunge depths.