In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area netwo...In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area network to wideband code division multiple access). Efficient vertical handoff should allocate network resources efficiently and maintain good quality of service (QoS) for the end users. The objective of this work is to determine conditions under which vertical handoff can be performed. The channel usage situation of each access network is formulated as a birth-death process with the objective of predicting the avaliable bandwidth and the blocking probability. A reward function is used to capture the network bandwidth and the blocking probability is expressed as a cost function. An end user will access the certain network which maximizes the total function defined as the combination of the reward fimction and the cost function. Simulation results show that the proposed algorithm can significantly improve the network performance, including higher bandwidth for end users and lower new call blocking and handoff call blocking probability for networks.展开更多
In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameter...In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameters.To this end,a method of Handover Parameters Adjustment for Conflict Avoidance(HPACA)is proposed.Considering the movement of users,HPCAC can dynamically adjust handover range to optimize the mobility load balancing.The movement of users is an important factor of handover,which has a dramatic impact on system performance.The numerical evaluation results show the proposed approach outperforms the existing method in terms of throughput,call blocking ratio,load balancing index,radio link failure ratio,ping-pong handover ratio and call dropping ratio.展开更多
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (50275150) supported by the National Natural Science Foundation of China
文摘In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area network to wideband code division multiple access). Efficient vertical handoff should allocate network resources efficiently and maintain good quality of service (QoS) for the end users. The objective of this work is to determine conditions under which vertical handoff can be performed. The channel usage situation of each access network is formulated as a birth-death process with the objective of predicting the avaliable bandwidth and the blocking probability. A reward function is used to capture the network bandwidth and the blocking probability is expressed as a cost function. An end user will access the certain network which maximizes the total function defined as the combination of the reward fimction and the cost function. Simulation results show that the proposed algorithm can significantly improve the network performance, including higher bandwidth for end users and lower new call blocking and handoff call blocking probability for networks.
基金supported by the National Natural Science Foundation of China under Grant No.61071118the National Basic Research Program of China(973 Program)under Grant No.2012CB316004+1 种基金Special Fund of Chongqing Key Laboratory(CSTC)Chongqing Municipal Education Commission’s Science and Technology Research Project under Grant No.KJ111506
文摘In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameters.To this end,a method of Handover Parameters Adjustment for Conflict Avoidance(HPACA)is proposed.Considering the movement of users,HPCAC can dynamically adjust handover range to optimize the mobility load balancing.The movement of users is an important factor of handover,which has a dramatic impact on system performance.The numerical evaluation results show the proposed approach outperforms the existing method in terms of throughput,call blocking ratio,load balancing index,radio link failure ratio,ping-pong handover ratio and call dropping ratio.