An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy ...An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.展开更多
The four-coil wireless power transfer(WPT)technology can effectively improve the transfer efficiency.The high efficiency,however,cannot be obtained along the whole transfer distance due to the phenomenon of frequency ...The four-coil wireless power transfer(WPT)technology can effectively improve the transfer efficiency.The high efficiency,however,cannot be obtained along the whole transfer distance due to the phenomenon of frequency splitting in the over coupled region.Aiming at this limitation,this paper presents a switchable WPT system to improve the overall efficiency by changing the number of working coils.The switching conditions for the designed system are determined based on the analysis of the transfer efficiencies of four structures,which is deduced through modeling the equivalent circuits.The simulation results well comply with the experimental results and both of them indicate that the switchable system can greatly improve the overall transfer efficiency along the whole transfer distance.The overall efficiency of the experimental system can reach above 70%at9.97 MHz without additional complexity,which is higher than any single structure system.展开更多
In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is bui...In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.展开更多
基金Supported by the National Natural Science Foundation and Civil Aviation Administration of China(No.61071105)
文摘An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.
基金supported by the National Natural Science Foundation of China(Grant No.61473281)the Self-planned Project Funded by State Key Laboratory(Grant No.2013-Z10)
文摘The four-coil wireless power transfer(WPT)technology can effectively improve the transfer efficiency.The high efficiency,however,cannot be obtained along the whole transfer distance due to the phenomenon of frequency splitting in the over coupled region.Aiming at this limitation,this paper presents a switchable WPT system to improve the overall efficiency by changing the number of working coils.The switching conditions for the designed system are determined based on the analysis of the transfer efficiencies of four structures,which is deduced through modeling the equivalent circuits.The simulation results well comply with the experimental results and both of them indicate that the switchable system can greatly improve the overall transfer efficiency along the whole transfer distance.The overall efficiency of the experimental system can reach above 70%at9.97 MHz without additional complexity,which is higher than any single structure system.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.2013CB035603)the National Natural Science Foundation of China(Grant Nos.51177013&51322705)+3 种基金Qing Lan Project of Jiangsu ProvinceSix Talents Climax Project of Jiangsu Province(Grant No.2011-ZBZZ-036)Technology R&D Program of Jiangsu Province(Grant Nos.BE2012100&BY2012195)“333 Talents Project”of Jiangsu Province
文摘In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.