A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the b...A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.展开更多
A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inte...A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.展开更多
Real-time applications are sensitive to conditions such as transmission delay and jittering. To cut down on the influence generated by the WLAN handoff process, three parts of WLAN (wireless local area networks) han...Real-time applications are sensitive to conditions such as transmission delay and jittering. To cut down on the influence generated by the WLAN handoff process, three parts of WLAN (wireless local area networks) handoff: handoff triggering, access point selection and the fast handoff algorithm are investigated. A fast handoff solution totally based on the station is proposed and it is composed of three parts: a handoff triggering mechanism based on dynamic threshold adjustment; an AP selection criterion based on probe delay; a fast handoff algorithm with differentiated channel selection and a dynamic cache. The station based solution is independent with AP's collaboration and avoids any changes in the IEEE 802. l l protocol. It is robust and has very good extensibility. Through tests and evaluation in a hotspot WLAN, the solution effectively reduces handoff latency and user experience of real-time applications is enhanced.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
基金Supported by the Construction of First-class Disciplines of Higher Education of Ningxia(Pedagogy)(NXYLXK2017B11)the Undergraduate Teaching Project of Ningxia Normal University(NJY202006)the National Natural Science Foundation of China(11701306)。
文摘A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.
基金The National Natural Science Foundation of China(No60496311)
文摘A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.
基金The National Natural Science Foundation of China(No.90604003,60603067)
文摘Real-time applications are sensitive to conditions such as transmission delay and jittering. To cut down on the influence generated by the WLAN handoff process, three parts of WLAN (wireless local area networks) handoff: handoff triggering, access point selection and the fast handoff algorithm are investigated. A fast handoff solution totally based on the station is proposed and it is composed of three parts: a handoff triggering mechanism based on dynamic threshold adjustment; an AP selection criterion based on probe delay; a fast handoff algorithm with differentiated channel selection and a dynamic cache. The station based solution is independent with AP's collaboration and avoids any changes in the IEEE 802. l l protocol. It is robust and has very good extensibility. Through tests and evaluation in a hotspot WLAN, the solution effectively reduces handoff latency and user experience of real-time applications is enhanced.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.