Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we...Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.展开更多
The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability...The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability of the device. The calculation was based on the optimization technique (step by step) and the modeling of individual parts of the device, namely MEMS-keys that perform the main function--switching. The urgency of this problem is the development and study of one device as a universal, that is, automatically switches from two signals simultaneously. Designs are original and devises are the intellectual property of the authors. The program for modeling phase shifters Computer Simulation Technology Microwave Studio and its results are presented in the paper.展开更多
基金Heilongjiang Province Natural Science Foundation(Grant No.F2016019);National Natural Science Foundation of China(Grant No.61571162);Major National Science and Technology Project(2015ZX03004002004); China Postdoctoral Science Foundation(Grant No.2014M561347).
文摘Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.
文摘The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability of the device. The calculation was based on the optimization technique (step by step) and the modeling of individual parts of the device, namely MEMS-keys that perform the main function--switching. The urgency of this problem is the development and study of one device as a universal, that is, automatically switches from two signals simultaneously. Designs are original and devises are the intellectual property of the authors. The program for modeling phase shifters Computer Simulation Technology Microwave Studio and its results are presented in the paper.