AIM: To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). METHODS: Total R...AIM: To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). METHODS: Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. RESULTS: Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. CONCLUSION: We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.展开更多
AIM: To assess each layer of the optical coherence tomography (OCT) image of the esophageal wall with reference to the histological structure, METHODS: Resected specimens of fresh pig esophagus was used as a model...AIM: To assess each layer of the optical coherence tomography (OCT) image of the esophageal wall with reference to the histological structure, METHODS: Resected specimens of fresh pig esophagus was used as a model for the esophageal wall. We injected cyanoacrylate adhesive into the specimens to create a marker, and scanned them using a miniature OCT probe. The localization of these markers was assessed in the OCT images. Then we compared the OCT-imaged morphology with the corresponding histological section, guided by the cyanoacrylate adhesive markers. We prepared a second set of experiments using nylon sutures as markers. RESULTS: The OCT image of the esophageal specimen has a clear five-layered morphology. First, it consisted of a relatively less reflective layer; second, a more reflective layer; third, a less reflective layer; fourth, a more reflective layer; and fifth, a less reflective layer. Comparing the OCT images with marked histological sections showed that the first layer corresponded to stratified squamous epithelium; the second to lamina propria; the third to muscularis mucosa; fourth, submucosa; and fifth, muscularis propria with deeper structures of the esophageal wa CONCLUSION: We demonstrated that the OCT image of the normal esophageal wall showed a five- layered morphology, which corresponds to histological esophageal wall components.展开更多
基金Supported by A research grant from the Biomarker Society
文摘AIM: To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). METHODS: Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. RESULTS: Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. CONCLUSION: We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.
文摘AIM: To assess each layer of the optical coherence tomography (OCT) image of the esophageal wall with reference to the histological structure, METHODS: Resected specimens of fresh pig esophagus was used as a model for the esophageal wall. We injected cyanoacrylate adhesive into the specimens to create a marker, and scanned them using a miniature OCT probe. The localization of these markers was assessed in the OCT images. Then we compared the OCT-imaged morphology with the corresponding histological section, guided by the cyanoacrylate adhesive markers. We prepared a second set of experiments using nylon sutures as markers. RESULTS: The OCT image of the esophageal specimen has a clear five-layered morphology. First, it consisted of a relatively less reflective layer; second, a more reflective layer; third, a less reflective layer; fourth, a more reflective layer; and fifth, a less reflective layer. Comparing the OCT images with marked histological sections showed that the first layer corresponded to stratified squamous epithelium; the second to lamina propria; the third to muscularis mucosa; fourth, submucosa; and fifth, muscularis propria with deeper structures of the esophageal wa CONCLUSION: We demonstrated that the OCT image of the normal esophageal wall showed a five- layered morphology, which corresponds to histological esophageal wall components.