为解决蒙特卡洛(Monte Carlo)方法在计算风险价值(Value at Risk,VaR)方面的缺陷,文章首先引入GARCH模型来刻画金融数据的波动聚集性,再引入马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法,来克服GARCH模型参数估计约束条件带...为解决蒙特卡洛(Monte Carlo)方法在计算风险价值(Value at Risk,VaR)方面的缺陷,文章首先引入GARCH模型来刻画金融数据的波动聚集性,再引入马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法,来克服GARCH模型参数估计约束条件带来的估计误差。通过对上证50指数的实证分析表明,引入MCMC方法可以提高模型的估计精确度。展开更多
基金partly supported by the China Postdoctoral Science Foundation(Grant No.2017M610156)the National Natural Science Foundation of China(Grant No.11501167)the Young Academic Leaders Project of Henan University of Science and Technology(Grant No.13490008)
文摘为解决蒙特卡洛(Monte Carlo)方法在计算风险价值(Value at Risk,VaR)方面的缺陷,文章首先引入GARCH模型来刻画金融数据的波动聚集性,再引入马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法,来克服GARCH模型参数估计约束条件带来的估计误差。通过对上证50指数的实证分析表明,引入MCMC方法可以提高模型的估计精确度。