本文讨论了曲面的切球丛的黎曼几何性质。证明了如下定理1 设(V,g)是2-维黎曼流形,(T(?)V,(?))是 V 上的切球丛,(?)为 Sasaki 度量,那么1)如果(T(?)V,(?))有正的截面曲率则 V 的 Gauss 曲率 k 必满足:0<k<4/(3c^2).2)(T(?)V,(?))...本文讨论了曲面的切球丛的黎曼几何性质。证明了如下定理1 设(V,g)是2-维黎曼流形,(T(?)V,(?))是 V 上的切球丛,(?)为 Sasaki 度量,那么1)如果(T(?)V,(?))有正的截面曲率则 V 的 Gauss 曲率 k 必满足:0<k<4/(3c^2).2)(T(?)V,(?))为共形平坦空间的充要条件是曲面 V 有常 Gauss 曲率。展开更多
文摘本文讨论了曲面的切球丛的黎曼几何性质。证明了如下定理1 设(V,g)是2-维黎曼流形,(T(?)V,(?))是 V 上的切球丛,(?)为 Sasaki 度量,那么1)如果(T(?)V,(?))有正的截面曲率则 V 的 Gauss 曲率 k 必满足:0<k<4/(3c^2).2)(T(?)V,(?))为共形平坦空间的充要条件是曲面 V 有常 Gauss 曲率。